树上的询问 bzoj-1316

题目大意:一棵n个点的带权有根树,有p个询问,每次询问树中是否存在一条长度为Len的路径,如果是,输出Yes否输出No.

注释:$1\le n\le 10^4$,$1\le p\le 100$,长度$\le 10^6$。

想法:有根树tm是啥意思?根在jb哪呢?老子我瞅tm这么半天也没看见根在哪呢??这题点分治即可。我们用点分治的第二种:分别计算子树,然后用之前的信息更新答案。对于此题,我们可以直接维护一个set就行。

最后,附上丑陋的代码... ...

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <set>
#define N 10010
using namespace std;
set<int>s;
int n,m,sum,root,cnt;
int a[N],dic[N<<1],size[N],mx[N],deep[N];
bool vis[N],ans[N];
int to[N<<1],head[N],val[N<<1],nxt[N<<1],tot;
inline void add(int x,int y,int z)
{
to[++tot]=y;
val[tot]=z;
nxt[tot]=head[x];
head[x]=tot;
}
void getroot(int pos,int fa)
{
mx[pos]=0,size[pos]=1;
for(int i=head[pos];i;i=nxt[i])
{
if(to[i]==fa||vis[to[i]]) continue;
getroot(to[i],pos);
size[pos]+=size[to[i]];
mx[pos]=max(mx[pos],size[to[i]]);
}
mx[pos]=max(mx[pos],sum-size[pos]);
if(mx[root]>mx[pos]) root=pos;
}
void getdeep(int pos,int fa)
{
size[pos]=1;
dic[++cnt]=deep[pos];
for(int i=head[pos];i;i=nxt[i])
{
if(to[i]==fa||vis[to[i]]) continue;
deep[to[i]]=deep[pos]+val[i];
getdeep(to[i],pos);
size[pos]+=size[to[i]];
}
}
void dispose(int pos)
{
// cout << " Fuck && Shit " << endl ;
vis[pos]=true;
s.clear();
s.insert(0);
for(int i=head[pos];i;i=nxt[i])
{
// cout << " Fuck 2" << endl ;
if(vis[to[i]]) continue;
cnt=0; deep[to[i]]=val[i],getdeep(to[i],0);
for(int j=1;j<=cnt;j++)
{
for(int k=1;k<=m;k++)
{
if(s.find(a[k]-dic[j])!=s.end()) ans[k]=1;
}
}
for(int j=1;j<=cnt;j++) s.insert(dic[j]);
}
for(int i=head[pos];i;i=nxt[i])
{
if(vis[to[i]]) continue;
sum=size[to[i]];
root=0;
getroot(to[i],0);
dispose(root);
// cout << " Fuck " << endl ;
}
}
int main()
{
scanf("%d%d",&n,&m);
int x,y,c;
for(int i=1;i<n;i++)
{
scanf("%d%d%d",&x,&y,&c);
add(x,y,c),add(y,x,c);
}
// cout << "Fuck1" << endl ;
for(int i=1;i<=m;i++)
{
scanf("%d",&a[i]);
if(!a[i]) ans[i]=1;
}
mx[0]=1<<30;
sum=n;
// cout << "Fuck1" << endl ;
getroot(1,0);
// cout << "Fuck1" << endl ;
dispose(root);
// cout << "Fuck : " << m << endl ;
for(int i=1;i<=m;i++)
{
printf("%s\n",ans[i]?"Yes":"No");
}
return 0;
}

小结:这种题更适合入门题。

[bzoj1316]树上的询问_点分治的更多相关文章

  1. BZOJ_1316_树上的询问_点分治

    BZOJ_1316_树上的询问_点分治 Description 一棵n个点的带权有根树,有p个询问,每次询问树中是否存在一条长度为Len的路径,如果是,输出Yes否输出No. Input 第一行两个整 ...

  2. [BZOJ1316]树上的询问 点分治

    1316: 树上的询问 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1017  Solved: 287[Submit][Status][Discus ...

  3. 【点分治】bzoj1316 树上的询问

    #include<cstdio> #include<algorithm> #include<cstring> using namespace std; #defin ...

  4. [bzoj1316] 树上的询问

    裸的点分治.. 及时把已经确定的询问清掉就能快不少.时间复杂度O(nlogn*p) #include<cstdio> #include<iostream> #include&l ...

  5. BZOJ 1316: 树上的询问 (点分治+set)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1316 因为只要求存在某条路径长度为K,所以点分,然后用set判断差值是否在set中就可以了. ...

  6. 【BZOJ1316】树上的询问 点分治+set

    [BZOJ1316]树上的询问 Description 一棵n个点的带权有根树,有p个询问,每次询问树中是否存在一条长度为Len的路径,如果是,输出Yes否输出No. Input 第一行两个整数n, ...

  7. BZOJ 1316: 树上的询问( 点分治 + 平衡树 )

    直接点分治, 用平衡树(set就行了...)维护. -------------------------------------------------------------------------- ...

  8. BZOJ_3697_采药人的路径_点分治

    BZOJ_3697_采药人的路径_点分治 Description 采药人的药田是一个树状结构,每条路径上都种植着同种药材. 采药人以自己对药材独到的见解,对每种药材进行了分类.大致分为两类,一种是阴性 ...

  9. BZOJ_2152_聪聪可可_点分治

    BZOJ_2152_聪聪可可_点分治 Description 聪聪和可可是兄弟俩,他们俩经常为了一些琐事打起来,例如家中只剩下最后一根冰棍而两人都想吃.两个人都想玩儿电脑(可是他们家只有一台电脑)…… ...

随机推荐

  1. C#实现对数据库的备份还原(完全)

    C#实现对数据库的备份还原 ( 用SQL语句实现对数据库备份还原操作 备份SqlServer数据库: backup database 数据库名 to disk (备份文件存放路径+文件名).bak 还 ...

  2. Codeforces--630A--Again Twenty Five! (水题)

     Again Twenty Five! Time Limit: 500MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u ...

  3. hdu1533 费用流模板

    Going Home Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  4. c++ 数据预处理(数据去噪,归一化)

    正态分布3σ原则,把3倍方差之外的点设想为噪声数据来排除. 归一化,将数据经过处理之后限定到一定的范围内,一般都会将数据限定到[0,1]. #include <iostream>#incl ...

  5. Device /dev/sdb1 not found (or ignored by filtering)

    /etc/lvm/lvm.conf filters

  6. jsp页面动态展示list-使用<select>和<c:forEach>标签

    转自:https://blog.csdn.net/zhugewochuang/article/details/80276466 后台:搜索数据放入list,然后为这个list提供响应的get和set方 ...

  7. E20170826-hm

    squash   vt. 挤进; 将(某人[某物])压扁; 使沉默; 平定(叛乱等); meld vt. (使) 融合,合并,结合; n. 混合,合并; amend  vt. 修订; 改良,修改; a ...

  8. A simple problem(并查集判环)

    http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2497 题意:给定一些点和边的关系,判断S点是否 ...

  9. Python 33(2)进程理论

    一:什么是进程         进程指的是一个正在进行 / 运行的程序,进程是用来描述程序执行过程的虚拟概念 进程vs程序 程序:一堆代码 进程:程序的执行的过程 进程的概念起源于操作系统,进程是操作 ...

  10. wps 2016 个人版 重新开始编号

    wps文档重新开始编号,继续编号,自定义编号 首先选中这一行 鼠标右键选中项目符号和编号 单击项目符号和编号,你可以重新开始编号为1,继续前一列表,还可自定义,单击确定按钮就可以实现你想要的结果 效果 ...