【hihocoder 1297】数论四·扩展欧几里德
【题目链接】:http://hihocoder.com/problemset/problem/1297
【题意】
【题解】
问题可以转化为数学问题
即(s1+v1*t)%m == (s2+v2*t)%m···①
也即
(s1+v1*t-(s2+v2*t))%m==0
也即
(s1-s2)+(v1-v2)*t=k*m
也即
(v2-v1)*t+m*k=(s1-s2)
与
A*X+B*y=C对应;
这里如果C是gcd(A,B)的倍数,则有解;
为了方便起见
我们在A<0的时候,把A和C都取相反数(相当于①式在移项的时候把左边的项移到右边来了)
(这样等下求出来的gcd就不会是负数了)
然后求出t=gcd(A,B)
如果有解的话
A/=t,B/=t,C/=t;
这时
新的A和B就互质了,即gcd(A,B)==1;
也求
A’x+B’y=C’···②
的解;
我们可以先求出
A’x+B’y=1···③
的解x0和y0;
然后把x0和y0都乘上C’是②的解了
但是这里必须要求x>0
这里有个知道特解求②的通解的公式;
推导过程如下
先考虑③的通解
A'x'+B'y'+(u+(-u))A'B'=1
=> (x' + uB')*A' + (y' - uA')*B' = 1
然后两边同时乘上C'
=>(X'*C'+C'*u*B')*A'+(y'*C'-u*C'*A')*B' = C'
=> X = X'*C'+C'*u*B', Y =X'*C'+C'*u*B'
也即x = x0*C'+C'*u*B',y = y0*C'-C'*u*A'
则x的最小正数解为(x0*C’%B+B)%B;
加上B’是为了保证x大于0
【Number Of WA】
0
【完整代码】
#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define ms(x,y) memset(x,y,sizeof x)
typedef pair<int,int> pii;
typedef pair<LL,LL> pll;
const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0);
const int N = 110;
LL s1,s2,v1,v2,m;
LL gcd(LL a,LL b)
{
if (b==0)
return a;
else
return gcd(b,a%b);
}
void ex_gcd(LL a,LL b,LL &x,LL &y)
{
if (b==0)
{
x = 1;y = 0;
return;
}
ex_gcd(b,a%b,x,y);
LL temp = y;
y = x-(a/b)*temp;
x = temp;
}
int main()
{
//freopen("F:\\rush.txt","r",stdin);
ios::sync_with_stdio(false),cin.tie(0);//scanf,puts,printf not use
cin >> s1 >> s2 >> v1 >> v2 >> m;
LL A = v1-v2,B = m,C = s2-s1;
if (A<0) A=-A,C=-C;
LL t = gcd(A,B);
if (C%t!=0) return cout << -1 << endl,0;
A/=t,B/=t,C/=t;
LL tx,ty;
ex_gcd(A,B,tx,ty);
tx = (tx*C%B+B)%B;
cout << tx << endl;
return 0;
}
【hihocoder 1297】数论四·扩展欧几里德的更多相关文章
- hiho一下 第九十五周 数论四·扩展欧几里德
题目 : 数论四·扩展欧几里德 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho周末在公园溜达.公园有一堆围成环形的石板,小Hi和小Ho分别站在不同的石板上 ...
- ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德
POJ 1061 青蛙的约会 Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%lld & %llu Descr ...
- 【POJ】2142 The Balance 数论(扩展欧几里得算法)
[题意]给定a,b,c,在天平左边放置若干重量a的砝码,在天平右边放置若干重量b的砝码,使得天平两端砝码差为c.设放置x个A砝码和y个B砝码,求x+y的最小值. [算法]数论(扩展欧几里德算法) [题 ...
- (扩展欧几里德算法)zzuoj 10402: C.机器人
10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...
- poj1061 青蛙的约会 扩展欧几里德的应用
这个题解得改一下,开始接触数论,这道题目一开始是看了别人的思路做的,后来我又继续以这种方法去做题,发现很困难,学长告诉我先看书,把各种词的定义看懂了,再好好学习,我做了几道朴素的欧几里德,尽管是小学生 ...
- 扩展欧几里德 POJ 1061
欧几里德的是来求最大公约数的,扩展欧几里德,基于欧几里德实现了一种扩展,是用来在已知a, b求解一组x,y使得ax+by = Gcd(a, b) =d(解一定存在,根据数论中的相关定理,证明是用裴蜀定 ...
- HDU2669 Romantic 扩展欧几里德 对我来说有陷阱
这道题对我来说有陷阱虽说是赤果果的扩展欧几里德,看样子基本攻还是不够哈,基本功夫一定要好,准备每天上那种洗脑课时分 多看看数论书,弥补一下 自己 狗一样的基础, 这道题用到了一个性质: 对于不定整数 ...
- poj2115 Looooops 扩展欧几里德的应用
好开心又做出一道,看样子做数论一定要先看书,认认真真仔仔细细的看一下各种重要的性质 及其用途,然后第一次接触的题目 边想边看别人的怎么做的,这样做出第一道题目后,后面的题目就完全可以自己思考啦 设要+ ...
- 扩展欧几里德 SGU 106
题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=106 题意:求ax + by + c = 0在[x1, x2], [y1, y2 ...
随机推荐
- 洛谷 P3953 [ NOIP 2017 ] 逛公园 —— 最短路DP
题目:https://www.luogu.org/problemnew/show/P3953 主要是看题解...还是觉得好难想啊... dfs DP,剩余容量的损耗是边权减去两点最短路差值...表示对 ...
- Coursera Algorithms Programming Assignment 2: Deque and Randomized Queue (100分)
作业原文:http://coursera.cs.princeton.edu/algs4/assignments/queues.html 这次作业与第一周作业相比,稍微简单一些.有三个编程练习:双端队列 ...
- java web支持jsonp跨域
jsonp跨域请求处理 Jsonp(JSON with Padding) 是 json的一种"使用模式",可以让网页从别的域名(网站)那获取资料,绕过同源策略(若地址里面的协议.域 ...
- bzoj2822[AHOI2012]树屋阶梯(卡特兰数)
2822: [AHOI2012]树屋阶梯 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 879 Solved: 513[Submit][Status] ...
- grunt的学习和使用
目前正在编写公司的部分组件,可能一个组件会包含很多js和css,为了项目上使用方便,应该压缩成一个js库,以供开发者使用,同时也可以减少很多http请求,提高页面访问速度.基于此,学习了grunt自动 ...
- Appium + python - 监控appium server start
import osimport time as t def start_appium(port = 4723,udid="4871660c"): a = os.popen(&quo ...
- MySql c#通用类 转
using System;using System.Data;using System.Configuration;using System.Collections.Generic;using Sys ...
- 自学Python八 爬虫大坑之网页乱码
Bug有时候破坏的你的兴致,阻挠了保持到现在的渴望.可是,自己又非常明白,它是一种激励,是注定要被你踩在脚下的垫脚石! python2.7中最头疼的可能莫过于编码问题了,尤其还是在window环境下, ...
- JQuery 动态创建表单,并自动提交
前言:写这个是为了实现使用cookie进行自动登录的功能, 下面的代码是一个元素一个元素进行创建和赋值的, (可以尝试下将所有的html代码(form.input)全部拼好以后放到${ } 中,再进行 ...
- MySQL定期执行任务相关问题
在sqlyog某数据库下的事件里新建事件,并写入一下代码: DELIMITER $$ ALTER DEFINER=`root`@`%` EVENT `0` ON SCHEDULE EVERY 24 H ...