紫书 例题11-9 UVa 1658 (拆点+最小费用流)
和终点, 那么就是原来的点相连。最后再把源点和起点连一条弧, 容量为2, 表示有两条路径, 终点
#include<cstdio>
#include<vector>
#include<queue>
#include<algorithm>
#include<cstring>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std;
typedef long long ll;
const int MAXN = 4123;
struct Edge
{
int from, to, cap, flow, cost;
Edge(int from, int to, int cap, int flow, int cost) : from(from), to(to), cap(cap), flow(flow), cost(cost) {};
};
vector<Edge> edges;
vector<int> g[MAXN];
int p[MAXN], a[MAXN], d[MAXN], vis[MAXN], n, m, s, t;
void AddEdge(int from, int to, int cap, int cost)
{
edges.push_back(Edge(from, to, cap, 0, cost));
edges.push_back(Edge(to, from, 0, 0, -cost));
g[from].push_back(edges.size() - 2);
g[to].push_back(edges.size() - 1);
}
bool spfa(int& flow, ll& cost)
{
REP(i, 0, t + 1) d[i] = (i == s ? 0 : 1e9);
memset(vis, 0, sizeof(vis));
vis[s] = 1; p[s] = 0; a[s] = 1e9;
queue<int> q;
q.push(s);
while(!q.empty())
{
int u = q.front(); q.pop();
vis[u] = 0;
REP(i, 0, g[u].size())
{
Edge& e = edges[g[u][i]];
if(e.cap > e.flow && d[e.to] > d[u] + e.cost)
{
d[e.to] = d[u] + e.cost;
p[e.to] = g[u][i];
a[e.to] = min(a[u], e.cap - e.flow);
if(!vis[e.to]) { vis[e.to] = 1; q.push(e.to); }
}
}
}
if(d[t] == 1e9) return false;
flow += a[t];
cost += (ll)d[t] * (ll)a[t];
for(int u = t; u != s; u = edges[p[u]].from)
{
edges[p[u]].flow += a[t];
edges[p[u] ^ 1].flow -= a[t];
}
return true;
}
int mincost(ll& cost)
{
int flow = 0; cost = 0;
while(spfa(flow, cost));
return flow;
}
int main()
{
while(~scanf("%d%d", &n, &m) && n)
{
REP(i, 0, 2 * n + 1) g[i].clear();
edges.clear();
s = 0, t = 2 * n + 1;
for(int i = 2; i <= n - 1; i++) AddEdge(i, n + i, 1, 0);
while(m--)
{
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
if(u != 1 && u != n) AddEdge(u + n, v, 1, w);
else AddEdge(u, v, 1, w);
}
ll ans;
AddEdge(s, 1, 2, 0);
AddEdge(n, t, 2, 0);
mincost(ans);
printf("%lld\n", ans);
}
return 0;
}
紫书 例题11-9 UVa 1658 (拆点+最小费用流)的更多相关文章
- UVa 1658 (拆点法 最小费用流) Admiral
题意: 给出一个有向带权图,求从起点到终点的两条不相交路径使得权值和最小. 分析: 第一次听到“拆点法”这个名词. 把除起点和终点以外的点拆成两个点i和i',然后在这两点之间连一条容量为1,费用为0的 ...
- 紫书 例题 11-13 UVa 10735(混合图的欧拉回路)(最大流)
这道题写了两个多小时-- 首先讲一下怎么建模 我们的目的是让所有点的出度等于入度 那么我们可以把点分为两部分, 一部分出度大于入度, 一部分入度大于出度 那么显然, 按照书里的思路,将边方向后,就相当 ...
- 紫书 例题8-3 UVa 1152(中途相遇法)
这道题要逆向思维, 就是求出答案的一部分, 然后反过去去寻找答案存不存在. 其实很多其他题都用了这道题目的方法, 自己以前都没有发现, 这道题专门考这个方法.这个方法可以没有一直往下求, 可以省去很多 ...
- 紫书 例题8-12 UVa 12627 (找规律 + 递归)
紫书上有很明显的笔误, 公式写错了.g(k, i)的那个公式应该加上c(k-1)而不是c(k).如果加上c(k-1)那就是这一次 所有的红气球的数目, 肯定大于最下面i行的红气球数 我用的是f的公式, ...
- 紫书 例题8-4 UVa 11134(问题分解 + 贪心)
这道题目可以把问题分解, 因为x坐标和y坐标的答案之间没有联系, 所以可以单独求两个坐标的答案 我一开始想的是按照左区间从小到大, 相同的时候从右区间从小到大排序, 然后WA 去uDebug找了数据 ...
- 紫书 例题8-17 UVa 1609 (构造法)(详细注释)
这道题用构造法, 就是自己依据题目想出一种可以得到解的方法, 没有什么规律可言, 只能根据题目本身来思考. 这道题的构造法比较复杂, 不知道刘汝佳是怎么想出来的, 我想的话肯定想不到. 具体思路紫书上 ...
- 紫书 例题 9-5 UVa 12563 ( 01背包变形)
总的来说就是价值为1,时间因物品而变,同时注意要刚好取到的01背包 (1)时间方面.按照题意,每首歌的时间最多为t + w - 1,这里要注意. 同时记得最后要加入时间为678的一首歌曲 (2)这里因 ...
- 紫书 例题 10-26 UVa 11440(欧拉函数+数论)
这里用到了一些数论知识 首先素因子都大于M等价与M! 互质 然后又因为当k与M!互质且k>M!时当且仅当k mod M! 与M!互质(欧几里得算法的原理) 又因为N>=M, 所以N!为M! ...
- 紫书 例题7-14 UVa 1602(搜索+STL+打表)
这道题想了很久不知道怎么设置状态,怎么拓展,怎么判重, 最后看了这哥们的博客 终于明白了. https://blog.csdn.net/u014800748/article/details/47400 ...
随机推荐
- CGI与ISAPI的区别(转)
一 CGI原理及其性能 1) CGI概念CGI即通用网关接口(Common Gateway Interface),它是一段程序,运行在服务器上,提供同客户端HTML页面的交互,通俗的讲CGI就象是一座 ...
- JS中检测数据类型的多种方法
面试当中经常会问到检测 js 的数据类型,我在工作当中也会用到这些方法.让我们一起走起!!! 首先给大家上一个案例 console.log(typeof "langshen"); ...
- pycharm 2018 3.4 for mac破解
使用pycharm的小伙伴都知道,pycharm分为社区版和专业版,这里具体区别不作过多介绍.本文带大家安装mac版的2018 pycharm 3.4 1.去官网下载pycharm 3.4 for m ...
- FROM使用子查询
FROM使用子查询 子查询结果充当一个临时表. //子查询形成的临时表字段为NO,NAME,SAL select no,name from( select empno no,e ...
- Java二维码打印
http://blog.csdn.net/OnePersonTZ/article/details/66560513
- WinServer-IIS-身份验证\SSL设置
匿名身份验证:不需任何加密,用的最广泛 基本身份验证:需用户名和密码,采用BASE-64加密,结合SSL证书才比较安全,加密方式很弱 windows身份验证:内网用,结合域控使用 摘要式身份验证:结合 ...
- 洛谷 P3576 [POI2014]MRO-Ant colony
P3576 [POI2014]MRO-Ant colony 题目描述 The ants are scavenging an abandoned ant hill in search of food. ...
- Accessibility辅助控制类
熟悉Android开发的都知道辅助功能服务 Accessibility service.他的作用有非常多.360豌豆荚等应用市场的非root自己主动安装.微信抢红包插件.盲人辅助程序等等功能都是靠它实 ...
- Oracle性能分析1:开启SQL跟踪和获取trace文件
当Oracle查询出现效率问题时,我们往往须要了解问题所在,这样才干针对问题给出解决方式.Oracle提供了SQL运行的trace信息,当中包括了SQL语句的文本信息.一些运行统计,处理过程中的等待, ...
- Android提高UI性能技巧
提高UI性能的方法事实上有非常多在实际的开发中都已经用到了,在此做一下总结. 1.降低主线程的堵塞时间 若一个操作的耗时较长(超过5秒),我们应该将其放入后台线程中运行.仅仅在须要改动UI界面时通知主 ...