题目中对卡特兰数的总结很不错

以下copy自题目

Catalan数列:1,1,2,5,14,42,(前面几个要背)

即 h(0)=1,h(1)=1,h(2)=2,h(3)=5...
公式:h(n)=C(n,2n)/(n+1)    注:C(3,5)表示组合数5个数选3个的方案数

递推公式:h(n)=h(n-1)*(4*n-2)/(n+1);

是不是很简单呀?下面的题也是Catalan数:

1:有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票, 剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?

2:一位大城市的律师在她住所以北n个街区和以东n个街区处工作。每天她走2n个街区去上班。如果他从不穿越(但可以碰到)从家到办公室的对角线,那么有多少条可能的道路?

3:在圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法数?

4:对角线不相交的情况下,将一个凸多边形区域分成三角形区域的方法数?   

5:一个栈(无穷大)的进栈序列为1,2,3,..n,有多少个不同的出栈序列?

6:n个结点可够造多少个不同的二叉树?

7:n个不同的数依次进栈,求不同的出栈结果的种数?

8:n个+1和n个-1构成2n项 a1,a2,...,a2n  其部分和满足a1+a2+...+ak>=0(k=1,2,3,..,2n)的数列的个数等于第n个Catnlan数。

有一次某同学推不出规律,暴力了前面的数据,看着眼熟,于是~~~~知道为什么要背了吧—_—!

代码

#include<cstdio>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
#define _for(i, a, b) for(int i = (a); i <= (b); i++)
using namespace std; typedef long long ll;
const int MAXN = 55;
ll h[MAXN]; int main()
{
h[0] = 1;
_for(i, 1, MAXN) h[i] = h[i-1] * (4 * i - 2) / (i + 1);
ll x;
scanf("%lld", &x);
printf("%lld\n", h[x]);
return 0;
}

caioj 1204 Catalan数(模板)的更多相关文章

  1. 【集训笔记】【大数模板】特殊的数 【Catalan数】【HDOJ1133【HDOJ1134【HDOJ1130

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3324 http://blog.csdn.net/xymscau/artic ...

  2. [Catalan数三连]网格&有趣的数列&树屋阶梯

    如何让孩子爱上打表 Catalan数 Catalan数是组合数学中一个常出现在各种计数问题中的数列. 以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)的名字来命名. 先丢个公式(设第n项为$ ...

  3. Catalan数应用整理

    应用一: codevs 3112 二叉树计数  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold   题目描述 Description 一个有n个结点的二叉树总共有 ...

  4. 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】

    Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...

  5. Catalan数(数论)

    Catalan数 [参考网址]http://www.cnblogs.com/gongxijun/p/3232682.html 记得当时我们队写过一个,差点超时,现在找到了公式,感觉还是挺简单的. 还要 ...

  6. Catalan数 && 【NOIP2003】出栈序列统计

    令h(1)=1, h(0)=1,catalan数满足递归式: h(n)=h(0)*h(n-1)+h(1)*h(n-2)+...+h(n-1)h(0) (n>=2) =C(2n, n)/(n+1) ...

  7. Catalan数

    先看2个问题: 问题一: n个元素进栈(栈无穷大),进栈顺序为1,2,3,....n,那么有多少种出栈顺序? 先从简单的入手:n=1,当然只有1种:n=2,可以是1,2  也可以是2,1:那么有2种: ...

  8. catalan数及笔试面试里那些相关的问题(转)

    一.catalan数由来和性质 1)由来 catalan数(卡塔兰数)取自组合数学中一个常在各种计数问题中出现的数列.以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名. 卡塔兰数的一般项 ...

  9. Catalan数推导(转载)

    Raney引理: 设整数序列A = {Ai, i=1, 2, …, N},且部分和Sk=A1+…+Ak,序列中所有的数字的和SN=1,在A的N个循环表示中,有且仅有一个序列B,满足B的任意部分和Si均 ...

随机推荐

  1. vue如何根据返回的值对元素进行样式渲染

    1.最终显示样式: 需要:根据任务状态值,显示不同颜色的原点表示任务状态,以及对优先级的数据,进行☆标记 2.代码实现: 在<el-table-column>中需要显示的内容前面,添加图标 ...

  2. 洛谷 P2152 [SDOI2009]SuperGCD (高精度)

    这道题直接写了我两个多小时-- 主要是写高精度的时候还存在着一些小毛病,调了很久 在输入这一块卡了很久. 然后注意这里用while的形式写,不然会炸 最后即使我已经是用的万进制了,但是交上去还是有两个 ...

  3. [luogu] P3333 [ZJOI2013]丽洁体(贪心)

    P3333 [ZJOI2013]丽洁体 题目描述 平时的练习和考试中,我们经常会碰上这样的题:命题人给出一个例句,要我们类比着写句子.这种往往被称为仿写的题,不单单出现在小学生的考试中,也有时会出现在 ...

  4. W10如何开启LinuxBash及安装Ubuntu

    W10如何开启LinuxBash的功能 1)开启开发人员模式 2)启动部分windows功能 完成后重启系统 然后在cmd中输入bash按命令操作即可使用bash命令 3)下载安装ubuntu lxr ...

  5. Codecademy网站安利 及 javaScript学习

    今天发现一个Code教学网站,号称可以利用零碎时间来学习些代码. codecademy (https://www.codecademy.com)

  6. C语言实现将一个整形数转换为两个字节16进制

    有时候要用到这个转换,这里记录一下,例如把 int a = 164 转换储存在数组里为 uint8_t b[0]=0x00  , b[1]=0xA4 . 很简单,转换如下: b[0] = a > ...

  7. ArcGIS 安装

    百度网盘下载链接 密码:tvm6 打开解压的文件后,第一步为安装licence manager(安装监听) 打开\ArcGIS10.4\LicenseManager中的Setup.exe 傻瓜式安装 ...

  8. mysql5.7官网直译SQL语句优化--分组优化

    1.14Group By Optimization 分组优化 大多数方法为了满足分组查询需要扫描整个表并且创建一个临时表,其中每组中的值都是连续的,如果可以使用聚合函数和临时表获取各个分组.在某些情况 ...

  9. Spring中 @Autowired标签与 @Resource标签 的区别(转)

    spring不但支持自己定义的@Autowired注解,还支持由JSR-250规范定义的几个注解,如:@Resource. @PostConstruct及@PreDestroy. 1. @Autowi ...

  10. Accessibility辅助控制类

    熟悉Android开发的都知道辅助功能服务 Accessibility service.他的作用有非常多.360豌豆荚等应用市场的非root自己主动安装.微信抢红包插件.盲人辅助程序等等功能都是靠它实 ...