A good feature subset is one that:

contains features highly correlated with (predictive of) the class,

yet uncorrelated with (not predictive of) each other.

特征选择的三种方法:

1)单一变量选择法:假设特征变量与响应变量y是线性关系。 看每个特征变量与响应变量y的相关程度。

2)随机森林法: 假设特征变量与响应变量y是非线性关系。 根据特征的重要性排序, 来选择特征。

3)RFE( recursive feature elimination):递归特征消除。

利用pipeline + gridSearchCv 实现 对 特征选择+ 分类器的参数优化选择。

Because RandomizedLogisticRegression is used for feature selection, it would need to be cross validated as part of a pipeline. You can apply GridSearchCV to a Pipeline which contains it as a feature selection step along with your classifier of choice. An example might look like:

pipeline = Pipeline([
('fs', RandomizedLogisticRegression()),
('clf', LogisticRegression())
]) params = {'fs__C':[0.1, 1, 10]} grid_search = GridSearchCV(pipeline, params)
grid_search.fit(X_train,y_train)

参考文献:

http://blog.datadive.net/selecting-good-features-part-iv-stability-selection-rfe-and-everything-side-by-side/

使用Boruta前 ,需要对缺失值进行填充。

https://www.analyticsvidhya.com/blog/2016/03/select-important-variables-boruta-package/

Variable selection is an important aspect of model building which every analyst must learn. After all, it helps in building predictive models free from correlated variables, biases and unwanted noise.

A lot of novice analysts assume that keeping all (or more) variables will result in the best model as you are not losing any information. Sadly, that is not true!

How many times has it happened that removing a variable from model has increased your model accuracy ?

At least, it has happened to me. Such variables are often found to be correlated and hinder achieving higher model accuracy. Today, we’ll learn one of the ways of how to get rid of such variables in R. I must say, R has an incredible CRAN repository. Out of all packages, one such available package for variable selection is Boruta Package.

特征选择Boruta的更多相关文章

  1. 挑子学习笔记:特征选择——基于假设检验的Filter方法

    转载请标明出处: http://www.cnblogs.com/tiaozistudy/p/hypothesis_testing_based_feature_selection.html Filter ...

  2. 用信息值进行特征选择(Information Value)

    Posted by c cm on January 3, 2014 特征选择(feature selection)或者变量选择(variable selection)是在建模之前的重要一步.数据接口越 ...

  3. MIL 多示例学习 特征选择

    一个主要的跟踪系统包含三个成分:1)外观模型,通过其可以估计目标的似然函数.2)运动模型,预测位置.3)搜索策略,寻找当前帧最有可能为目标的位置.MIL主要的贡献在第一条上. MIL与CT的不同在于后 ...

  4. 【转】[特征选择] An Introduction to Feature Selection 翻译

    中文原文链接:http://www.cnblogs.com/AHappyCat/p/5318042.html 英文原文链接: An Introduction to Feature Selection ...

  5. 单因素特征选择--Univariate Feature Selection

    An example showing univariate feature selection. Noisy (non informative) features are added to the i ...

  6. 主成分分析(PCA)特征选择算法详解

    1. 问题 真实的训练数据总是存在各种各样的问题: 1. 比如拿到一个汽车的样本,里面既有以“千米/每小时”度量的最大速度特征,也有“英里/小时”的最大速度特征,显然这两个特征有一个多余. 2. 拿到 ...

  7. 干货:结合Scikit-learn介绍几种常用的特征选择方法

    原文  http://dataunion.org/14072.html 主题 特征选择 scikit-learn 作者: Edwin Jarvis 特征选择(排序)对于数据科学家.机器学习从业者来说非 ...

  8. 【Machine Learning】wekaの特征选择简介

    看过这篇博客的都应该明白,特征选择代码实现应该包括3个部分: 搜索算法: 评估函数: 数据: 因此,代码的一般形式为: AttributeSelection attsel = new Attribut ...

  9. weka特征选择(IG、chi-square)

    一.说明 IG是information gain 的缩写,中文名称是信息增益,是选择特征的一个很有效的方法(特别是在使用svm分类时).这里不做详细介绍,有兴趣的可以googling一下. chi-s ...

随机推荐

  1. thunderbird 设置 邮件回复时内容在上方显示

    1 . 编辑->属性 2.选择当前账户,在弹出窗体的右下角 选择 管理标示 ,在弹出窗中选择编辑 3.在弹出标识设置窗体中选择 编写&地址簿 选项卡选择 在引用内容之前回复

  2. python操作RabbitMQ(不错)

    一.rabbitmq RabbitMQ是一个在AMQP基础上完整的,可复用的企业消息系统.他遵循Mozilla Public License开源协议. MQ全称为Message Queue, 消息队列 ...

  3. jfrog artifactory jenkins pipeline 集成

    1. 预备环境 artifactory ( 开源版本 ) maven jenkins jenkins artifactory plugin (在插件管理安装即可) 2. 配置artifactory  ...

  4. js对字符串进行编码方法总结

    在用javascript对URL字符串进行编码中,虽然escape().encodeURI().encodeURIComponent()三种方法都能对一些影响URL完整性的特殊字符进行过滤.但后两者是 ...

  5. Avro之二:入门demo

    一.使用avro-maven插件为avsc文件生成对应的java类: 在项目的pom.xml中增加依赖及插件如下: <dependency> <groupId>org.apac ...

  6. Invalid byte tag in constant pool: 19

    环境: windows 2008 server R2   ; tomcat 8.5.3 ;   jdk-1.8.0_91 故障截图: 报的就是 Invalid byte tag in constant ...

  7. python' s fifth day for me dict

    字典 dict : key--vlaue 储存大量的数据,而且是关系型数据,查询速度快(二分查询) 数据类型分类: 可变数据类型(不可哈希):list(列表) , dict(字典), set(集合) ...

  8. linux 动态静态库

    库从本质上来说是一种可执行代码的二进制格式,可以被载入内存中执行.库分静态库和动态库两种.  1  静态库和动态库的区别1.1. 静态函数库    (1)静态函数库的名字一般是lib[name].a( ...

  9. Stall Reservations(贪心+优先队列)

    Description Oh those picky N (1 <= N <= 50,000) cows! They are so picky that each one will onl ...

  10. FatMouse' Trade(Hdu 1009)

    Description FatMouse prepared M pounds of cat food, ready to trade with the cats guarding the wareho ...