TCP,UDP,IP包头格式及说明(zz)
一、MAC帧头定义
/数据帧定义,头14个字节,尾4个字节/
typedef struct _MAC_FRAME_HEADER
{
char m_cDstMacAddress[]; //目的mac地址
char m_cSrcMacAddress[]; //源mac地址
short m_cType; //上一层协议类型,如0x0800代表上一层是IP协议,0x0806为arp
}__attribute__((packed))MAC_FRAME_HEADER,*PMAC_FRAME_HEADER; typedef struct _MAC_FRAME_TAIL
{
unsigned int m_sCheckSum; //数据帧尾校验和
}__attribute__((packed))MAC_FRAME_TAIL, *PMAC_FRAME_TAIL;
二、IP头结构的定义
/IP头定义,共20个字/
typedef struct _IP_HEADER
{
char m_cVersionAndHeaderLen; //版本信息(前4位),头长度(后4位)
char m_cTypeOfService; // 服务类型8位
short m_sTotalLenOfPacket; //数据包长度
short m_sPacketID; //数据包标识
short m_sSliceinfo; //分片使用
char m_cTTL; //存活时间
char m_cTypeOfProtocol; //协议类型
short m_sCheckSum; //校验和
unsigned int m_uiSourIp; //源ip
unsigned int m_uiDestIp; //目的ip
} __attribute__((packed))IP_HEADER, *PIP_HEADER ;
tcp头结构定义
/TCP头定义,共20个字节/
typedef struct _TCP_HEADER
{
short m_sSourPort; // 源端口号16bit
short m_sDestPort; // 目的端口号16bit
unsigned int m_uiSequNum; // 序列号32bit
unsigned int m_uiAcknowledgeNum; // 确认号32bit
short m_sHeaderLenAndFlag; // 前4位:TCP头长度;中6位:保留;后6位:标志位
short m_sWindowSize; // 窗口大小16bit
short m_sCheckSum; // 检验和16bit
short m_surgentPointer; // 紧急数据偏移量16bit
}__attribute__((packed))TCP_HEADER, *PTCP_HEADER;
/*TCP头中的选项定义
kind(8bit)+Length(8bit,整个选项的长度,包含前两部分)+内容(如果有的话)
KIND = 1表示 无操作NOP,无后面的部分
2表示 maximum segment 后面的LENGTH就是maximum segment选项的长度(以byte为单位,1+1+内容部分长度)
3表示 windows scale 后面的LENGTH就是 windows scale选项的长度(以byte为单位,1+1+内容部分长度)
4表示 SACK permitted LENGTH为2,没有内容部分
5表示这是一个SACK包 LENGTH为2,没有内容部分
8表示时间戳,LENGTH为10,含8个字节的时间戳
*/
TCP的option
typedef struct _TCP_OPTIONS
{
char m_ckind;
char m_cLength;
char m_cContext[];
}__attribute__((packed))TCP_OPTIONS, *PTCP_OPTIONS;
四、UDP头结构的定义
/UDP头定义,共8个字节/
typedef struct _UDP_HEADER
{
unsigned short m_usSourPort; // 源端口号16bit
unsigned short m_usDestPort; // 目的端口号16bit
unsigned short m_usLength; // 数据包长度16bit
unsigned short m_usCheckSum; // 校验和16bit
}__attribute__((packed))UDP_HEADER, *PUDP_HEADER;
tcp、ip、udp头部格式
2.2 TCP/IP报文格式
1、IP报文格式
IP协议是TCP/IP协议族中最为核心的协议。它提供不可靠、无连接的服务,也即依赖其他层的协议进行差错控制。在局域网环境,IP协议往往被封装在以太网帧(见本章1.3节)中传送。而所有的TCP、UDP、ICMP、IGMP数据都被封装在IP数据报中传送。如图2-3所示:
图2-3 TCP/IP报文封装
图2-4是IP头部(报头)格式:(RFC 791)。
图2-4 IP头部格式
其中:
●版本(Version)字段:占4比特。用来表明IP协议实现的版本号,当前一般为IPv4,即0100
●报头长度(Internet Header Length,IHL)字段:占4比特。是头部占32比特的数字,包括可选项。普通IP数据报(没有任何选项),该字段的值是5,即160比特=20字节。此字段最大值为60字节。
●服务类型(Type of Service ,TOS)字段:占8比特。其中前3比特为优先权子字段(Precedence,现已被忽略)。第8比特保留未用。第4至第7比特分别代表延迟、吞吐量、可靠性和花费。当它们取值为1时分别代表要求最小时延、最大吞吐量、最高可靠性和最小费用。这4比特的服务类型中只能置其中1比特为1。可以全为0,若全为0则表示一般服务。服务类型字段声明了数据报被网络系统传输时可以被怎样处理。例如:TELNET协议可能要求有最小的延迟,FTP协议(数据)可能要求有最大吞吐量,SNMP协议可能要求有最高可靠性,NNTP(Network News Transfer Protocol,网络新闻传输协议)可能要求最小费用,而ICMP协议可能无特殊要求(4比特全为0)。实际上,大部分主机会忽略这个字段,但一些动态路由协议如OSPF(Open Shortest Path First Protocol)、IS-IS(Intermediate System to Intermediate System Protocol)可以根据这些字段的值进行路由决策。
●总长度字段:占16比特。指明整个数据报的长度(以字节为单位)。最大长度为65535字节。
●标志字段:占16比特。用来唯一地标识主机发送的每一份数据报。通常每发一份报文,它的值会加1。
●标志位字段:占3比特。标志一份数据报是否要求分段。
●段偏移字段:占13比特。如果一份数据报要求分段的话,此字段指明该段偏移距原始数据报开始的位置。
●生存期(TTL:Time to Live)字段:占8比特。用来设置数据报最多可以经过的路由器数。由发送数据的源主机设置,通常为32、64、128等。每经过一个路由器,其值减1,直到0时该数据报被丢弃。
●协议字段:占8比特。指明IP层所封装的上层协议类型,如ICMP(1)、IGMP(2) 、TCP(6)、UDP(17)等。
●头部校验和字段:占16比特。内容是根据IP头部计算得到的校验和码。计算方法是:对头部中每个16比特进行二进制反码求和。(和ICMP、IGMP、TCP、UDP不同,IP不对头部后的数据进行校验)。
●源IP地址、目标IP地址字段:各占32比特。用来标明发送IP数据报文的源主机地址和接收IP报文的目标主机地址。
可选项字段:占32比特。用来定义一些任选项:如记录路径、时间戳等。这些选项很少被使用,同时并不是所有主机和路由器都支持这些选项。可选项字段的长度必须是32比特的整数倍,如果不足,必须填充0以达到此长度要求。
2、TCP数据段格式
TCP是一种可靠的、面向连接的字节流服务。源主机在传送数据前需要先和目标主机建立连接。然后,在此连接上,被编号的数据段按序收发。同时,要求对每个数据段进行确认,保证了可靠性。如果在指定的时间内没有收到目标主机对所发数据段的确认,源主机将再次发送该数据段。
如图2-5所示,是TCP头部结构(RFC 793、1323)。
图2-5 TCP头部结构
●源、目标端口号字段:占16比特。TCP协议通过使用”端口”来标识源端和目标端的应用进程。端口号可以使用0到65535之间的任何数字。在收到服务请求时,操作系统动态地为客户端的应用程序分配端口号。在服务器端,每种服务在”众所周知的端口”(Well-Know Port)为用户提供服务。
●顺序号字段:占32比特。用来标识从TCP源端向TCP目标端发送的数据字节流,它表示在这个报文段中的第一个数据字节。
●确认号字段:占32比特。只有ACK标志为1时,确认号字段才有效。它包含目标端所期望收到源端的下一个数据字节。
●头部长度字段:占4比特。给出头部占32比特的数目。没有任何选项字段的TCP头部长度为20字节;最多可以有60字节的TCP头部。
●标志位字段(U、A、P、R、S、F):占6比特。各比特的含义如下:
◆URG:紧急指针(urgent pointer)有效。
◆ACK:确认序号有效。
◆PSH:接收方应该尽快将这个报文段交给应用层。
◆RST:重建连接。
◆SYN:发起一个连接。
◆FIN:释放一个连接。
●窗口大小字段:占16比特。此字段用来进行流量控制。单位为字节数,这个值是本机期望一次接收的字节数。
●TCP校验和字段:占16比特。对整个TCP报文段,即TCP头部和TCP数据进行校验和计算,并由目标端进行验证。
●紧急指针字段:占16比特。它是一个偏移量,和序号字段中的值相加表示紧急数据最后一个字节的序号。
●选项字段:占32比特。可能包括”窗口扩大因子”、”时间戳”等选项。
3、UDP数据段格式
UDP是一种不可靠的、无连接的数据报服务。源主机在传送数据前不需要和目标主机建立连接。数据被冠以源、目标端口号等UDP报头字段后直接发往目的主机。这时,每个数据段的可靠性依靠上层协议来保证。在传送数据较少、较小的情况下,UDP比TCP更加高效。
如图2-6所示,是UDP头部结构(RFC 793、1323):
图2-6 UDP数据段格式
●源、目标端口号字段:占16比特。作用与TCP数据段中的端口号字段相同,用来标识源端和目标端的应用进程。
●长度字段:占16比特。标明UDP头部和UDP数据的总长度字节。
●校验和字段:占16比特。用来对UDP头部和UDP数据进行校验。和TCP不同的是,对UDP来说,此字段是可选项,而TCP数据段中的校验和字段是必须有的。
2.3 套接字
在每个TCP、UDP数据段中都包含源端口和目标端口字段。有时,我们把一个IP地址和一个端口号合称为一个套接字(Socket),而一个套接字对(Socket pair)可以唯一地确定互连网络中每个TCP连接的双方(客户IP地址、客户端口号、服务器IP地址、服务器端口号)。
如图2-7所示,是常见的一些协议和它们对应的服务端口号。
图2-7 常见协议和对应的端口号
需要注意的是,不同的应用层协议可能基于不同的传输层协议,如FTP、TELNET、SMTP协议基于可靠的TCP协议。TFTP、SNMP、RIP基于不可靠的UDP协议。
同时,有些应用层协议占用了两个不同的端口号,如FTP的20、21端口,SNMP的161、162端口。这些应用层协议在不同的端口提供不同的功能。如FTP的21端口用来侦听用户的连接请求,而20端口用来传送用户的文件数据。再如,SNMP的161端口用于SNMP管理进程获取SNMP代理的数据,而162端口用于SNMP代理主动向SNMP管理进程发送数据。
还有一些协议使用了传输层的不同协议提供的服务。如DNS协议同时使用了TCP 53端口和UDP 53端口。DNS协议在UDP的53端口提供域名解析服务,在TCP的53端口提供DNS区域文件传输服务。
TCP,UDP,IP包头格式及说明(zz)的更多相关文章
- 三十天学不会TCP,UDP/IP网络编程-IP头格式祥述
我又来了,这篇文章还是来做(da)推(guang)介(gao)我自己的!俗话说事不过三,我觉得我下次得换个说法了,不然估计要被厌恶了,但是我是好心呐,一定要相信我纯洁的眼神.由于这两年接触到了比较多的 ...
- 三十天学不会TCP,UDP/IP编程--MAC地址和数据链路层
这篇文章主要是来做(da)推(guang)介(gao)的!由于这两年接触到了比较多的这方面的知识,不想忘了,我决定把他们记录下来,所以决定在GitBook用半年时间上面写下来,这是目前写的一节,后面会 ...
- 三十天学不会TCP,UDP/IP网络编程-ARP -- 连接MAC和IP
继续来做(da)推(guang)介(gao)我自己的!由于这两年接触到了比较多的这方面的知识,不想忘了,我决定把他们记录下来,所以决定在GitBook用半年时间上面写下来,这是目前写的一节,目前已完成 ...
- 三十天学不会TCP,UDP/IP网络编程-UDP,从简单的开始
如果对和程序员有关的计算机网络知识,和对计算机网络方面的编程有兴趣,欢迎去gitbook(https://www.gitbook.com/@rogerzhu/)star我的这一系列文章,虽然说现在这种 ...
- 三十天学不会TCP,UDP/IP网络编程-TraceRoute的哲学
新年快乐,继续来部分粘贴复制我的这一系列文章啦,如果对和程序员有关的计算机网络知识,和对计算机网络方面的编程有兴趣,欢迎去gitbook(https://www.gitbook.com/@rogerz ...
- 浅析TCP /UDP/ IP协议
互连网早期的时候,主机间的互连使用的是NCP协议.这种协议本身有很多缺陷,如:不能互连不同的主机,不能互连不同的操作系统,没有纠错功能.为了改善这种缺点,大牛弄出了TCP/IP协议.现在几乎所有的操作 ...
- http tcp udp ip 间的关系
首先,我自己梳理一下,其实除了应对以后的笔试,还有需要应对的是自己在编程中对于api的选择,我在满足需求时采取哪种方案更好. 首先,我需要了解的是tcp/ip是一个协议组,有三大层: ip 对应于网络 ...
- [na]二层+tcp/udp数据包格式
标准:6+6+2+3 =17 3 思科:6+6+2+3+3=20 6 ip首部格式 tcp首部格式
- TCP & UDP & IP
TCP和UDP的区别 TCP UDP 是否连接 面向连接 面向非连接 应用场合 可靠的 不可靠的 速度 慢 快 传送数据 字节流 数据报 是否可用于广播 否 是 为什么UDP比TCP快 不需要连接 ...
随机推荐
- eclipse版本命名规则与其他软件命名
文章:Eclipse各版本代号一览表 eclipse使用星球.神话人物.元素名称作为命名代号. 所以思路要放宽,不要拘泥于已有经验. java是用咖啡命名的: python中文意思是蟒蛇: 不拘泥于已 ...
- 编程练习:寻找发帖"水王"扩展问题二
回顾 在前面两篇文章已经实现了水王id出现次数超过一半,以及水王id出现次数刚好一半 分析 借助上面水王id出现次数刚好出现一半的分析,其实这里就是找出数组中出现次数前三的元素,具体的分析,见前面两篇 ...
- 文件系统中 atime,lazytime,relatime 详聊
atime,ctime,mtime是文件inode的三个时间戳,分别表示文件最近一次的访问时间:inode本身的更改(changed)时间:文件数据的更改(modify)时间:这几个概念还是很好区分. ...
- hihocoder 1465 循环串匹配问题(后缀自动机)
后缀自动机感觉好万能 tries图和ac自动机能做的,后缀自动机很多也都可以做 这里的循环匹配则是后缀自动机能做的另一个神奇功能 循环匹配意思就是S是abba, T是abb 问'abb', 'bba' ...
- [CF45G]Prime Problem
题目大意:将$1$到$n(1<n\leqslant6000)$分成若干组数,要求每组数的和均为质数,若存在一种分配方式,输出每个数所在的组的编号,有多组解输出任意一组解,若不存在,输出$-1$ ...
- 洛谷 P4168 [Violet]蒲公英 解题报告
P4168 [Violet]蒲公英 题目背景 亲爱的哥哥: 你在那个城市里面过得好吗? 我在家里面最近很开心呢.昨天晚上奶奶给我讲了那个叫「绝望」的大坏蛋的故事的说!它把人们的房子和田地搞坏,还有好多 ...
- 【BZOJ 2753 滑雪与时间胶囊】
Time Limit: 50 Sec Memory Limit: 128 MBSubmit: 2843 Solved: 993[Submit][Status][Discuss] Descripti ...
- [学习笔记]LCT进阶操作
LCT总结——应用篇(附题单)(LCT) 一般都是维护链的操作.split即可搞定. 进阶操作的话,处理好辅助树和原树的关系即可搞定. 其实,最大的区别就是,splay随便转,辅助树形态变了,但是原树 ...
- [Noip2004]虫食算 dfs
搜索问题的关键:优秀的搜索策略以及行之有效的减枝 对于这道题我们阶乘搜肯定不行所以我们按位搜,我们对每一位的三个数进行赋值,然后判解. 对于此一类的搜索乘上一个几十的常数来减枝往往要比直接搜要快得多, ...
- MySQL里执行SHOW INDEX结果中Cardinality的含义
今天在写一个Perl脚本,想自动化查找出MySQL数据库中可能无效的索引,于是根据朝阳的书上提到的一些规则,我来设计了一些判断方法,其中发现某个我想要的值就是SHOW INDEX FROM table ...