[洛谷P1420]最长连号
题目大意:输入$n$个正整数,($1\leq n\leq 10000$),要求输出最长的连号的长度。(连号指从小到大连续自然数)
题解:考虑从小到大连续自然数差分为$1$,所以可以把原数列差分(后缀自动机不怎么会写啊),查询串为$1,11,111,\dots,111\dots(n-1个1)$,把它们插入到$AC$自动机中,然后查询即可,原数列差分不为$0,1$时赋为$0$(因为不对答案有影响)
卡点:1.原序列差分的数不为$0,1$时会挂。。。
C++ Code:($AC$自动机2018-8-13)
#include <cstdio>
#include <queue>
#define maxn 10010
using namespace std;
int n;
int s[maxn], a[maxn], b[maxn];
int nxt[maxn][2], fail[maxn], cnt[maxn], tot;
int root = 0;
queue<int> q;
void add(int *s, int n) {
int now = root, len = n;
for (int i = 1; i <= len; i++) {
if (nxt[now][s[i]]) now = nxt[now][s[i]];
else now = nxt[now][s[i]] = ++tot;
cnt[now]++;
}
}
void build() {
for (int i = 0; i < 2; i++)
if (nxt[root][i]) fail[nxt[root][i]] = root, q.push(nxt[root][i]);
while (!q.empty()) {
int x = q.front(); q.pop();
for (int i = 0; i < 2; i++) {
if (nxt[x][i]) fail[nxt[x][i]] = nxt[fail[x]][i], q.push(nxt[x][i]);
else nxt[x][i] = nxt[fail[x]][i];
}
}
}
int ask(int *s, int n) {
int now = root, ans = 0, len = n;
for (int i = 1; i <= n; i++) {
if (s[i] > 1 || s[i] < 0) s[i] = 0;
now = nxt[now][s[i]];
for (int j = now; j && ~cnt[j]; j = fail[j]) ans += cnt[j], cnt[j] = -1;
}
return ans;
}
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &s[i]), b[i] = 1;
for (int i = 2; i <= n; i++) a[i - 1] = s[i] - s[i - 1];
add(b, n - 1);
build();
printf("%d\n", ask(a, n - 1) + 1);
return 0;
}
题解:当然我们也可以用后缀自动机来做,对差分串建一个后缀自动机,发现若答案长度为$len$,那么长度为$len-1$也是答案,所以可以二分答案(如果你直接求最长的$1$的字段也可以,但我就得这样不是很优美有趣)。
卡点:无
C++ Code:
#include <cstdio>
#include <cstring>
#define maxn 20010
using namespace std;
int nxt[maxn][2], fail[maxn], R[maxn], idx;
int last, now, np, p, t, root;
int n, a[maxn];
void insert(int x) {
if (x < 0 || x > 1) x = 0;
R[now = ++idx] = R[p = last] + 1; last = now;
for (; ~p && !nxt[p][x]; p = fail[p]) nxt[p][x] = now;
if (!~p) {fail[now] = root; return ;}
if (R[t = nxt[p][x]] == R[p] + 1) {fail[now] = t; return ;}
R[np = ++idx] = R[p] + 1;
for (int i = 0; i < 2; i++) nxt[np][i] = nxt[t][i];
fail[np] = fail[t]; fail[t] = fail[now] = np;
for (; nxt[p][x] == t; p = fail[p]) nxt[p][x] = np;
}
int tmp[maxn];
bool check(int mid) {
for (int i = 1; i <= mid; i++) tmp[i] = 1;
int now = root;
for (int i = 1; i <= mid; i++) {
now = nxt[now][tmp[i]];
if (!now) return false;
}
return true;
}
int main() {
scanf("%d", &n);
fail[root = 0] = -1; idx = last = 1;
scanf("%d", &a[1]);
for (int i = 2; i <= n; i++) {
scanf("%d", &a[i]);
insert(a[i] - a[i - 1]);
}
int l = 0, r = n, ans = 0;
while (l <= r) {
int mid = l + r >> 1;
if (check(mid)) {
l = mid + 1;
ans = mid;
} else r = mid - 1;
}
printf("%d\n", ans + 1);
}
[洛谷P1420]最长连号的更多相关文章
- 洛谷 P1420 最长连号【最长合法子序列/断则归一】
题目描述 输入n个正整数,(1<=n<=10000),要求输出最长的连号的长度.(连号指从小到大连续自然数) 输入输出格式 输入格式: 第一行,一个数n; 第二行,n个正整数,之间用空格隔 ...
- 洛谷P1420 最长连号 题解
题目传送门 这道题我是打暴力的...(尴尬) 所以直接是O(N2)的时间,但好像没有炸,数据很水... #include<bits/stdc++.h> using namespace st ...
- P1420 最长连号
洛谷——P1420 最长连号 题目描述 输入n个正整数,(1<=n<=10000),要求输出最长的连号的长度.(连号指从小到大连续自然数) 输入输出格式 输入格式: 第一行,一个数n; 第 ...
- 【洛谷】 P1420 最长连号
题目描述 输入n个正整数,(1<=n<=10000),要求输出最长的连号的长度.(连号指从小到大连续自然数) 输入输出格式 输入格式: 第一行,一个数n; 第二行,n个正整数,之间用空格隔 ...
- 洛谷P1470 最长前缀
P1470 最长前缀 Longest Prefix 题目描述 在生物学中,一些生物的结构是用包含其要素的大写字母序列来表示的.生物学家对于把长的序列分解成较短的序列(即元素)很感兴趣. 如果一个集合 ...
- 洛谷P1470 最长前缀 Longest Prefix
P1470 最长前缀 Longest Prefix 73通过 236提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交 讨论 题解 最新讨论 求大神指导,为何错? 题目描述 在生 ...
- 洛谷 [p1439] 最长公共子序列 (NlogN)
可以发现只有当两个序列中都没有重复元素时(1-n的排列)此种优化才是高效的,不然可能很不稳定. 求a[] 与b[]中的LCS 通过记录lis[i]表示a[i]在b[]中的位置,将LCS问题转化为最长上 ...
- 洛谷.T22136.最长不下降子序列(01归并排序 分治)
题目链接 \(Description\) 给定一个长为n的序列,每次可以反转 \([l,r]\) 区间,代价为 \(r-l+1\).要求在\(4*10^6\)代价内使其LIS长度最长,并输出需要操作的 ...
- 洛谷P2766 最长递增子序列问题
https://www.luogu.org/problemnew/show/P2766 注:题目描述有误,本题求的是最长不下降子序列 方案无限多时输出 n 网络流求方案数,长见识了 第一问: DP 同 ...
随机推荐
- 【mysql处理远程登陆授权及数据库迁移备份问题】
Database changedMariaDB [mysql]> grant all PRIVILEGES on mysql.* to root@'%' identified by '123'; ...
- 吐血分享:QQ群霸屏技术教程之霸屏实施细则
小号,再不养,成本抗不住了;QQ群,再不玩,真的就玩不动啦. 霸屏系列,坚持下来差不多10来篇,最近更新的几篇,算是霸屏系列的更新版,毕竟相当的规则变动了. 经营自己,是一种前瞻能力,霸屏十篇,有多少 ...
- Windows环境下安装redis及PHP Redis扩展
附带管理工具安装教程 安装环境 WNMP环境 参考教程:WIN10下WNMP开发环境部署 安装windows的redis服务 安装包下载 选择msi安装包下载并安装,下载可能会有点慢,请自行使用梯子. ...
- 解决Pycharm无法使用已经安装Selenium的问题
重要:参考资料 当前版本 python版本:2.7 pycharm: 2017 原来本机是已经安装了2.7和selenium,新安装了一个pycharm的ide,于是selenium总是安装报错.At ...
- ant + jmeter 自动化接口测试环境部署
1.jdk下载安装 下载地址:http://www.oracle.com/technetwork/java/javase/downloads/index.html 2.jmeter下载 jmeter官 ...
- SQL 公用表表达式(CTE)
1.概念 公用表表达式(Common Table Expression)是SQL SERVER 2005版本之后引入的一个特性.CTE可以看作是一个临时的结果集,可以在接下来的一个SELECT,INS ...
- spark优化系列一:参数介绍
1 spark on yarn常用属性介绍 属性名 默认值 属性说明 spark.yarn.am.memory 512m 在客户端模式(client mode)下,yarn应用master使用的内存数 ...
- Android开发——View绘制过程源码解析(一)
)UNSPECIFIED:表示View可以设置成任意的大小,没有任何限制.这种情况比较少见. 2. MeasureSpec的生成过程 2.1 顶级View的MeasureSpec // desired ...
- 初步学习pg_control文件之九
接前文,初步学习pg_control文件之八 来看这个: pg_time_t time; /* time stamp of last pg_control update */ 当初初始化的时候,是这样 ...
- 获取单片机唯一id(stm32获取单片机唯一id)
stm32唯一id: 不同型号的stm32单片机,id不在同一地址上!具体地址可以通过用户手册中的Device electronic signature>Unique device ID reg ...