bzoj 1101 zap 莫比乌斯
1101: [POI2007]Zap
Time Limit: 10 Sec Memory Limit: 162 MB
Description
FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a
,y<=b,并且gcd(x,y)=d。作为FGD的同学,FGD希望得到你的帮助。
Input
第一行包含一个正整数n,表示一共有n组询问。(1<=n<= 50000)接下来n行,每行表示一个询问,每行三个
正整数,分别为a,b,d。(1<=d<=a,b<=50000)
Output
对于每组询问,输出到输出文件zap.out一个正整数,表示满足条件的整数对数。
Sample Input
4 5 2
6 4 3
Sample Output
2
//对于第一组询问,满足条件的整数对有(2,2),(2,4),(4,2)。对于第二组询问,满足条件的整数对有(
6,3),(3,3)。
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define esp 0.00000000001
#define pi 4*atan(1)
const int N=1e5+,M=1e7+,inf=1e9+,mod=1e9+;
int mu[N], p[N], np[N], cnt, sum[N];
void init() {
mu[]=;
for(int i=; i<N; ++i) {
if(!np[i]) p[++cnt]=i, mu[i]=-;
for(int j=; j<=cnt && i*p[j]<N; ++j) {
int t=i*p[j];
np[t]=;
if(i%p[j]==) { mu[t]=; break; }
mu[t]=-mu[i];
}
}
for(int i=;i<N;i++)
sum[i]=sum[i-]+mu[i];
}
ll getans(int b,int d)
{
ll ans=;
for(int L=,R=;L<=b;L=R+)
{
R=min(b/(b/L),d/(d/L));
ans+=(ll)(sum[R]-sum[L-])*(b/L)*(d/L);
}
return ans;
}
int main()
{
int T;
init();
scanf("%d",&T);
while(T--)
{
int b,d,k;
scanf("%d%d%d",&b,&d,&k);
if(b>d)swap(b,d);
ll ans=;
printf("%lld\n",getans(b/k,d/k));
}
return ;
}
bzoj 1101 zap 莫比乌斯的更多相关文章
- bzoj 1101 Zap —— 莫比乌斯反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 直接莫比乌斯反演. 代码如下: #include<cstdio> #inc ...
- BZOJ 1101 Zap(莫比乌斯反演)
http://www.lydsy.com/JudgeOnline/problem.php?id=1101 给定a,b,d,求有多少gcd(x,y)==d(1<=x<=a&& ...
- bzoj 1101 zap
gcd(x,y)=d-->gcd(x/d,y/d)=1. 即求Σ(i<=n/d)Σ(j<=m/d) e(gcd(i,j)) 因为e=miu×1,可以卷积. 因为多组询问,需要sqrt ...
- 【题解】Zap(莫比乌斯反演)
[题解]Zap(莫比乌斯反演) 裸题... 直接化吧 [P3455 POI2007]ZAP-Queries 所有除法默认向下取整 \[ \Sigma_{i=1}^x\Sigma_{j=1}^y[(i, ...
- bzoj [SDOI2014]数表 莫比乌斯反演 BIT
bzoj [SDOI2014]数表 莫比乌斯反演 BIT 链接 bzoj luogu loj 思路 \[ \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}a*[f[ ...
- BZOJ 1101 Luogu P3455 POI 2007 Zap (莫比乌斯反演+数论分块)
手动博客搬家: 本文发表于20171216 13:34:20, 原地址https://blog.csdn.net/suncongbo/article/details/78819470 URL: (Lu ...
- BZOJ 1101: [POI2007]Zap( 莫比乌斯反演 )
求 answer = ∑ [gcd(x, y) = d] (1 <= x <= a, 1 <= y <= b) . 令a' = a / d, b' = b / d, 化简一下得 ...
- BZOJ 1101 [POI2007]Zap | 第一道莫比乌斯反(繁)演(衍)
题目: http://www.lydsy.com/JudgeOnline/problem.php?id=1101 题解: http://www.cnblogs.com/mrha/p/8203612.h ...
- BZOJ 1101 [POI2007]Zap(莫比乌斯反演)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1101 [题目大意] 求[1,n][1,m]内gcd=k的情况 [题解] 考虑求[1,n ...
随机推荐
- 【BZOJ2384】[Ceoi2011]Match KMP
[BZOJ2384][Ceoi2011]Match Description 作为新一轮广告大战的一部分,格丁尼亚的一家大公司准备在城市的某处设置公司的标志(logo).公司经理决定用一些整栋的建筑来构 ...
- Parenthesis(前缀和+线段树)
1809: Parenthesis Time Limit: 5 Sec Memory Limit: 128 Mb Submitted: 2291 Solved: 622 Des ...
- C#关于AutoResetEvent的使用介绍----修正
说明 之前在博客园看到有位仁兄发表一篇关于AutoResetEvent介绍,看了下他写的代码,看上去没什么问题,但仔细看还是能发现问题.下图是这位仁兄代码截图. 仁兄博客地址:http://www.c ...
- 【转】Python 30个实用小Tips
1. 原地交换两个数字 Python 提供了一个直观的在一行代码中赋值与交换(变量值)的方法,请参见下面的示例: x, y = 10, 20 print(x, y) x, y = y, x print ...
- Linux考试题附答案
一.选择题 1.在登录Linux时,一个具有唯一进程ID号的shell将被调用,这个ID是什么(B)? A.NID B.PID C.UID D.CID 2.下面哪个目录存放用户密码信息(B) A./b ...
- python下多线程的限制以及多进程中传递参数的方式
python多线程有个全局解释器锁(global interpreter lock),这个锁的意思是任一时间只能有一个线程使用解释器,跟单cpu跑多个程序一个意思,大家都是轮着用的,这叫“并发”,不是 ...
- Python线程包装器
import threading import subprocess import time def need_thread(func, *args, **kwargs): def fun(): pr ...
- vmware虚拟机网络模式
转自:https://blog.csdn.net/u013201439/article/details/51491746 前言 有时因为工作和学习需要,我们安装了虚拟机,但是却发现不理解虚拟机的网络连 ...
- 分布式计算开源框架Hadoop入门实践(一)
在SIP项目设计的过程中,对于它庞大的日志在开始时就考虑使用任务分解的多线程处理模式来分析统计,在我从前写的文章<Tiger Concurrent Practice --日志分析并行分解设计与实 ...
- requirejs源码分析: 路径
1. 没有设置baseUrl(一般我们都会设置baseurl) 在没有设置baseUrl时, 默认 baseurl: "./" 当指定data-mai ...