A Simple Tree Problem

Time Limit: 3000ms
Memory Limit: 65536KB

This problem will be judged on ZJU. Original ID: 3686
64-bit integer IO format: %lld      Java class name: Main

Type:

None

 

None

Graph Theory

2-SAT

Articulation/Bridge/Biconnected Component

Cycles/Topological Sorting/Strongly Connected Component

Shortest Path

Bellman Ford

Dijkstra/Floyd Warshall

Euler Trail/Circuit

Heavy-Light Decomposition

Minimum Spanning Tree

Stable Marriage Problem

Trees

Directed Minimum Spanning Tree

Flow/Matching

Graph Matching

Bipartite Matching

Hopcroft–Karp Bipartite Matching

Weighted Bipartite Matching/Hungarian Algorithm

Flow

Max Flow/Min Cut

Min Cost Max Flow

DFS-like

Backtracking with Pruning/Branch and Bound

Basic Recursion

IDA* Search

Parsing/Grammar

Breadth First Search/Depth First Search

Advanced Search Techniques

Binary Search/Bisection

Ternary Search

Geometry

Basic Geometry

Computational Geometry

Convex Hull

Pick's Theorem

Game Theory

Green Hackenbush/Colon Principle/Fusion Principle

Nim

Sprague-Grundy Number

Matrix

Gaussian Elimination

Matrix Exponentiation

Data Structures

Basic Data Structures

Binary Indexed Tree

Binary Search Tree

Hashing

Orthogonal Range Search

Range Minimum Query/Lowest Common Ancestor

Segment Tree/Interval Tree

Trie Tree

Sorting

Disjoint Set

String

Aho Corasick

Knuth-Morris-Pratt

Suffix Array/Suffix Tree

Math

Basic Math

Big Integer Arithmetic

Number Theory

Chinese Remainder Theorem

Extended Euclid

Inclusion/Exclusion

Modular Arithmetic

Combinatorics

Group Theory/Burnside's lemma

Counting

Probability/Expected Value

Others

Tricky

Hardest

Unusual

Brute Force

Implementation

Constructive Algorithms

Two Pointer

Bitmask

Beginner

Discrete Logarithm/Shank's Baby-step Giant-step Algorithm

Greedy

Divide and Conquer

Dynamic Programming

Tag it!

Given a rooted tree, each node has a boolean (0 or 1) labeled on it. Initially, all the labels are 0.

We define this kind of operation: given a subtree, negate all its labels.

And we want to query the numbers of 1's of a subtree.

Input

Multiple test cases.

First line, two integer N and M, denoting the numbers of nodes and numbers of operations and queries.(1<=N<=100000, 1<=M<=10000)

Then a line with N-1 integers, denoting the parent of node 2..N. Root is node 1.

Then M lines, each line are in the format "o node" or "q node", denoting we want to operate or query on the subtree with root of a certain node.

Output

For each query, output an integer in a line.

Output a blank line after each test case.

Sample Input

3 2
1 1
o 2
q 1

Sample Output

1

题目大意:有棵根节点为1的树,共有n个节点。有m次询问。第二行为从2--->n各个节点对应的父亲节点编号。下面的m行是询问,o  ai表示将节点为ai的子树所有节点的值进行异或即0变1,1变0。q ai表示询问目前该子树的节点的和值为多少。

解题思路:其实这个题目重点在如何将多子树转化成线段树进行操作。我们如果重新将树编号,那么可以让每个节点对应一段区间。从根节点1开始深搜,编号为1,每当搜到一个节点,就让编号的值加1,让这个编号等于该节点的区间左端点,等把该节点的所有子节点访问完后,将这时的编号赋值给该节点的区间右端点。这时这个区间内的所有节点都是该节点的子节点。  后边就是区间更新的问题了。

#include<bits/stdc++.h>
using namespace std;
#define mid (L+R)/2
#define lson rt*2,L,mid
#define rson rt*2+1,mid+1,R
const int maxn=1e5+50;
vector<int>G[maxn];
int Lt[maxn],Rt[maxn];
int sumv[maxn*4],lazy[maxn*4];
int n,cn;
void dfs(int u){
Lt[u]=++cn;
int v;
for(int i=0;i<G[u].size();i++){
v=G[u][i];
dfs(v);
}
Rt[u]=cn;
}
void build(int rt,int L,int R){
sumv[rt]=lazy[rt]=0;
if(L==R)
return ;
build(lson);
build(rson);
}
void PushDown(int rt,int L,int R){
if(lazy[rt]){
lazy[rt*2]^=1;
lazy[rt*2+1]^=1;
sumv[rt*2]=(mid-L+1)-sumv[rt*2];
sumv[rt*2+1]=(R-mid)-sumv[rt*2+1];
lazy[rt]=0;
}
}
void PushUp(int rt){
sumv[rt]=sumv[rt*2]+sumv[rt*2+1];
}
void update(int rt,int L,int R,int l_ran,int r_ran){
if(l_ran<=L&&R<=r_ran){
lazy[rt]^=1;
sumv[rt]=R-L+1-sumv[rt];
return ;
}
PushDown(rt,L,R);
if(l_ran<=mid){
update(lson,l_ran,r_ran);
}
if(r_ran>mid){
update(rson,l_ran,r_ran);
}
PushUp(rt);
}
int query(int rt,int L,int R,int l_ran,int r_ran){
if(l_ran<=L&&R<=r_ran){
return sumv[rt];
}
int ret=0;
PushDown(rt,L,R); //lazy下放
if(l_ran<=mid){
ret+=query(lson,l_ran,r_ran);
}
if(r_ran>mid){
ret+=query(rson,l_ran,r_ran);
}
return ret;
}
int main(){
char s[4];
int m,subt,a,res;
while(scanf("%d%d",&n,&m)!=EOF){
build(1,1,n);
for(int i=0;i<=n;i++)
G[i].clear();
for(int i=2;i<=n;i++){
scanf("%d",&a);
G[a].push_back(i);
}
cn=0;
dfs(1);
for(int i=0;i<m;i++){
scanf("%s%d",s,&subt);
if(s[0]=='o'){
update(1,1,n,Lt[subt],Rt[subt]);
}else{
res=query(1,1,n,Lt[subt],Rt[subt]);
printf("%d\n",res);
}
}printf("\n"); }
return 0;
} /*
6 5
1 2 1 4 4
o 4
q 4
q 5
q 6
q 1
*/

  

BNU 28887——A Simple Tree Problem——————【将多子树转化成线段树+区间更新】的更多相关文章

  1. POJ.3468 A Simple Problem with Integers(线段树 区间更新 区间查询)

    POJ.3468 A Simple Problem with Integers(线段树 区间更新 区间查询) 题意分析 注意一下懒惰标记,数据部分和更新时的数字都要是long long ,别的没什么大 ...

  2. poj 3468 A Simple Problem with Integers (线段树区间更新求和lazy思想)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 75541   ...

  3. POJ 3468:A Simple Problem with Integers(线段树区间更新模板)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 141093 ...

  4. poj3468 A Simple Problem with Integers(线段树区间更新)

    https://vjudge.net/problem/POJ-3468 线段树区间更新(lazy数组)模板题 #include<iostream> #include<cstdio&g ...

  5. POJ 3468A Simple Problem with Integers(线段树区间更新)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 112228 ...

  6. POJ-3468-A Simple Problem with Integers(线段树 区间更新 区间和)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 139191 ...

  7. POJ 3468 A Simple Problem with Integers(线段树区间更新区间查询)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 92632   ...

  8. [POJ] 3468 A Simple Problem with Integers [线段树区间更新求和]

    A Simple Problem with Integers   Description You have N integers, A1, A2, ... , AN. You need to deal ...

  9. 暑期训练狂刷系列——poj 3468 A Simple Problem with Integers (线段树+区间更新)

    题目连接: http://poj.org/problem?id=3468 题目大意: 给出n个数,有两种操作: 1:"C a b c",[a,b]中的每一个数都加上c. 2:&qu ...

随机推荐

  1. 苹果微信内置浏览器cookie

    苹果微信内置浏览器cookie会被自动清掉,但safari不会清除,原因还未找到,解决方法是把前端把数据通过header传到后台

  2. .NET平台的资源文件管理

    可以管理文本.图片等不同类型的资源 管理方式(增删改) 可以直接修改XXX.resx源文件(XML格式,文本直接管理内容,图片需要指定路径,资源名和图片名可以不同) 也可以在VS的可视化界面上进行操作 ...

  3. 以太坊系列之七: p2p模块的dial--以太坊源码学习

    dial.go阅读手记 dial.go是负责和peer建立连接关系的地方,主要是实现 type dialer interface { /* peers已经有的结点 */ newTasks(runnin ...

  4. 5种banner

      <!DOCTYPE html><html> <head>  <meta charset="UTF-8">  <tit ...

  5. WebStrom背景色设置

    Ctrl Alt S快速打开setting:

  6. 钩子(hook)编程

    一.钩子介绍 1.1钩子的实现机制 钩子英文名叫Hook,是一种截获windows系统中某应用程序或者所有进程的消息的一种技术.下图是windows应用程序传递消息的过程: 如在键盘中按下一键,操作系 ...

  7. apache-jmeter-3.1的简单压力测试使用方法(下载和安装)

    博客转载https://blog.csdn.net/lan_shu/article/details/55190127 压力测试工具LoadRunner是收费的,而且操作复杂.作为开发人员当然是用apa ...

  8. JDBC记录

    13:55 2018/7/22 用于执行SQL语句的Java API,可以为多种关系数据库提供统一访问 ---------常用API--------- |- Driver接口: 表示java驱动程序接 ...

  9. CSS3 选择器 修改 整数个样式

    .blogbottom ul li:nth-child(4n){margin-right:0px;} 说明:4n就是每第4个.

  10. bootdo开源项目修改代码后页面无效

    修改了JS文件,重启服务后,发现页面没有刷新出效果. 清空缓存一般就可以解决此问题.