4519: [Cqoi2016]不同的最小割
4519: [Cqoi2016]不同的最小割
Time Limit: 20 Sec Memory Limit: 512 MB
Submit: 489 Solved: 301
[Submit][Status][Discuss]
Description
学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所有结点分成
两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割。对于带权图来说,将
所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而s,t的最小割指的是在
关于s,t的割中容量最小的割。
而对冲刺NOI竞赛的选手而言,求带权图中两点的最小割已经不是什么难事了。我们可以把
视野放宽,考虑有N个点的无向连通图中所有点对的最小割的容量,共能得到N(N−1)
2个数值。
这些数值中互不相同的有多少个呢?这似乎是个有趣的问题。
Input
输入文件第一行包含两个数N,M,表示点数和边数。接下来M行,每行三个数u,v,w,
表示点u和点v(从1开始标号)之间有条边权值是w。
1<=N<=850 1<=M<=8500 1<=W<=100000
Output
输出文件第一行为一个整数,表示个数。
Sample Input
4 4
1 2 3
1 3 6
2 4 5
3 4 4
Sample Output
3
补了一下等价流树Gusfield算法
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
using namespace std;
#define LL long long
int read()
{
int s=0,f=1;char ch=getchar();
while(!('0'<=ch&&ch<='9')){if(ch=='-')f=-1;ch=getchar();}
while('0'<=ch&&ch<='9'){s=(s<<3)+(s<<1)+ch-'0';ch=getchar();}
return s*f;
}
int n,m;
int be[855],bn[17005],bv[17005],bl[17005],bw=1;
int ce[855],cn[17005],cv[17005],cl[17005],cw=1;
void put(int u,int v,int l)
{cw++;cn[cw]=ce[u];ce[u]=cw;cv[cw]=v;cl[cw]=l;}
int dis[855];
bool bfs(int s,int t)
{
for(int i=1;i<=n;i++)dis[i]=1000000,be[i]=ce[i];
dis[s]=1;
queue<int>q;
for(q.push(s);!q.empty();)
{int x=q.front();q.pop();
for(int i=be[x];i;i=bn[i])
if(bl[i]&&dis[bv[i]]>dis[x]+1)
{dis[bv[i]]=dis[x]+1;
q.push(bv[i]);
}
}
return dis[t]<=n;
}
int dinic(int x,int T,int f)
{
if(x==T)
return f;
int sum=0;
for(int &i=be[x];i&&f;i=bn[i])
if(bl[i]&&dis[bv[i]]==dis[x]+1)
{int s=dinic(bv[i],T,min(f,bl[i]));
f-=s;sum+=s;
bl[i]-=s,bl[i^1]+=s;
}
return sum;
}
int cut(int u,int v)
{
int sum=0;
for(int i=1;i<=cw;i++)bn[i]=cn[i],bl[i]=cl[i],bv[i]=cv[i];
while(bfs(u,v))
sum+=dinic(u,v,850000000);
return sum;
}
int f[855];
set<int>s;
int main()
{
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
n=read(),m=read();
for(int i=1;i<=m;i++)
{int u=read(),v=read(),w=read();
put(u,v,w);
put(v,u,w);
}
for(int i=2;i<=n;i++)f[i]=1;
for(int u=2;u<=n;u++)
{int v=f[u];
s.insert(cut(u,v));
for(int j=u+1;j<=n;j++)
if(f[j]==v&&dis[j]<=n)
f[j]=u;
}
printf("%d\n",s.size());
//fclose(stdin);
//fclose(stdout);
return 0;
}
4519: [Cqoi2016]不同的最小割的更多相关文章
- bzoj 4519: [Cqoi2016]不同的最小割 最小割树
怎么求一张无向图中任意两点之间的最小割? http://fanhq666.blog.163.com/blog/static/8194342620113495335724/ 一张无向图不同的最小割最多有 ...
- BZOJ 4519 [CQOI2016]不同的最小割
这道题目很奇怪. 为什么奇怪?因为这道题用了一种叫分治最小割/最小割树的玩意. 以前从来没有见过这东西. 推荐一个讲这玩意的博客 写起来还是很顺手的. #include<iostream> ...
- bzoj 4519: [Cqoi2016]不同的最小割【最小割树Gomory–Hu tree】
算法详见:http://www.cnblogs.com/lokiii/p/8191573.html 求出点两两之间的最小割之后,把他们扔到map/set里跑即可 可怕的是map和set跑的时间竟然完全 ...
- bzoj千题计划140:bzoj4519: [Cqoi2016]不同的最小割
http://www.lydsy.com/JudgeOnline/problem.php?id=4519 最小割树 #include<queue> #include<cstdio&g ...
- bzoj4519: [Cqoi2016]不同的最小割(分治最小割)
4519: [Cqoi2016]不同的最小割 题目:传送门 题解: 同BZOJ 2229 基本一样的题目啊,就最后用set记录一下就ok 代码: #include<cstdio> #inc ...
- [ZJOI2011]最小割 & [CQOI2016]不同的最小割 分治求最小割
题面: [ZJOI2011]最小割 [CQOI2016]不同的最小割 题解: 其实这两道是同一道题.... 最小割是用的dinic,不同的最小割是用的isap 其实都是分治求最小割 简单讲讲思路吧 就 ...
- 【BZOJ4519】[Cqoi2016]不同的最小割 最小割树
[BZOJ4519][Cqoi2016]不同的最小割 Description 学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分 ...
- [bzoj4519][Cqoi2016]不同的最小割_网络流_最小割_最小割树
不同的最小割 bzoj-4519 Cqoi-2016 题目大意:题目链接. 注释:略. 想法: 我们发现这和最小割那题比较像. 我们依然通过那个题说的办法一样,构建最小割树即可. 接下来就是随便怎么处 ...
- BZOJ4519——[cqoi2016]不同的最小割
0.题意:求两点之间的最小割的不同的总量 1.分析:裸的分治+最小割,也叫最小割树或GH树,最后用set搞一下就好 #include <set> #include <queue> ...
随机推荐
- python_面向对象—代码练习
"""注意:代码切勿照搬,错误请留言指出""" import re ''' class Person: name='xxx' age=20 ...
- Oracle RAC集群添加节点
一,节点环境 所有节点分发/etc/hosts,这里我添加两个节点,一个是上次删除的节点,另一个是什么都没有的节点,尝试添加 服务器介绍什么的都在这hosts文件了,大家自己琢磨下 [grid@nod ...
- jenkins 部署应用
一,安装rpm包 安装jdk 安装jenkins 查看jdk是否安装成功 启动jenkins systemctl start jenkins 开机自启 systemctl enable jenkins ...
- 【Tensorflow】 Object_detection之训练PASCAL VOC数据集
参考:Running Locally 1.检查数据.config文件是否配置好 可参考之前博客: Tensorflow Object_detection之配置Training Pipeline Ten ...
- Ubuntu以及CentOS7修改ssh端口号详细步骤
1.Ubuntu修改ssh端口号步骤: 1.修改sshd.config文件.执行vim etc/ssh/sshd_config.增加上我们需要增加的ssh的端口号.图例增加了5309的端口号. ESC ...
- SpringBoot | 第三十四章:CXF构建WebService服务
前言 上一章节,讲解了如何使用Spring-WS构建WebService服务.其实,创建WebService的方式有很多的,今天来看看如何使用apache cxf来构建及调用WebService服务. ...
- AtCoder Grand Contest 023 C - Painting Machines
Description 一个长度为 \(n\) 的序列,初始都为 \(0\),你需要求出一个长度为 \(n-1\) 的排列 \(P\), 按照 \(1\) 到 \(n\) 的顺序,每次把 \(P_i\ ...
- c#-FrameWork01
Framwork ArrayList l 集合类似于数组,同样是用来存放连续数据的,但集合的功能比数组更强大 l 集合和数组的最大区别:数组一旦定义以后就无法改变其大小,而集合可以动态的改变其大小 ...
- JS数组遍历方法
常用数组遍历方法: 1.原始for循环 var a = [1,2,3]; for(var i=0;i<a.length;i++){ console.log(a[i]); //结果依次为1,2,3 ...
- Mac 10.11.4 安装mysql-5.7.13 默认密码问题
今天下载了一个最新版的mysql dmg安装包来安装mysql,安装的整个过程竟然都没有提示输入root用户默认密码,我也没太在意,然后连接数据库时竟然提示输入密码,当时就一脸懵逼了.尝试各种密码,为 ...