[HAOI2007]理想的正方形 BZOJ1047 二维RMQ
题目描述
有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小。
输入输出格式
输入格式:
第一行为3个整数,分别表示a,b,n的值
第二行至第a+1行每行为b个非负整数,表示矩阵中相应位置上的数。每行相邻两数之间用一空格分隔。
输出格式:
仅一个整数,为a*b矩阵中所有“n*n正方形区域中的最大整数和最小整数的差值”的最小值。
输入输出样例
说明
问题规模
(1)矩阵中的所有数都不超过1,000,000,000
(2)20%的数据2<=a,b<=100,n<=a,n<=b,n<=10
(3)100%的数据2<=a,b<=1000,n<=a,n<=b,n<=100
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<time.h>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 700005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
#define mclr(x,a) memset((x),a,sizeof(x))
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii; inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/
int a, b, n;
int Log;
int maxx[1103][1103];
int minn[1103][1103];
int mx[1101][1101]; int query(int x, int y) {
int Max = -inf, Min = inf;
Max = max(maxx[x][y], max(maxx[x + n - (1 << Log)][y + n - (1 << Log)], max(maxx[x + n - (1 << Log)][y], maxx[x][y + n - (1 << Log)])));
Min = min(minn[x][y], min(minn[x + n - (1 << Log)][y + n - (1 << Log)], min(minn[x + n - (1 << Log)][y], minn[x][y + n - (1 << Log)])));
return Max - Min;
} int main()
{
// ios::sync_with_stdio(0);
a = rd(); b = rd(); n = rd();
for (int i = 1; i <= a; i++) {
for (int j = 1; j <= b; j++) {
mx[i][j] = rd();
maxx[i][j] = minn[i][j] = mx[i][j];
}
}
for (Log = 0; (1 << (Log + 1) <= n); Log++);
for (int k = 0; k < Log; k++) {
for (int i = 1; i + (1 << k) <= a; i++) {
for (int j = 1; j + (1 << k) <= b; j++) {
maxx[i][j] = max(maxx[i][j], max(maxx[i + (1 << (k))][j + (1 << (k))], max(maxx[i][j + (1 << k)], maxx[i + (1 << k)][j])));
minn[i][j] = min(minn[i][j], min(minn[i + (1 << k)][j + (1 << k)], min(minn[i + (1 << k)][j], minn[i][j + (1 << k)])));
}
}
}
ll ans = 9999999999;
for (int i = 1; i <= a - n + 1; i++) {
for (int j = 1; j <= b - n + 1; j++) {
ans = min(ans, 1ll * query(i, j));
}
}
printf("%d\n", ans);
return 0;
}
[HAOI2007]理想的正方形 BZOJ1047 二维RMQ的更多相关文章
- 【洛谷2216】[HAOI2007] 理想的正方形(二维RMQ)
点此看题面 大致题意: 求出一个矩阵中所有\(n*n\)正方形中极差的最小值. 另一种做法 听说这题可以用单调队列去做,但是我写了一个二维\(RMQ\). 二维\(RMQ\) \(RMQ\)相信大家都 ...
- P2216 [HAOI2007]理想的正方形(二维RMQ)
题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一行为3个整数,分别表示a,b,n的值 第二行至 ...
- 【洛谷 P2216】 [HAOI2007]理想的正方形(二维ST表)
题目链接 做出二维\(ST\)表,然后\(O(n^2)\)扫一遍就好了. #include <cstdio> #include <cstring> #include <a ...
- [luoguP2216] [HAOI2007]理想的正方形(二维单调队列)
传送门 1.先弄个单调队列求出每一行的区间为n的最大值最小值. 2.然后再搞个单调队列求1所求出的结果的区间为n的最大值最小值 3.最后扫一遍就行 懒得画图,自己体会吧. ——代码 #include ...
- 【bzoj1047】[HAOI2007]理想的正方形 二维RMQ
题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入 第一行为3个整数,分别表示a,b,n的值第二行至第a+1行每行为b个非 ...
- 理想的正方形 HAOI2007(二维RMQ)
理想的正方形 省队选拔赛河南 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 大师 Master 题目描述 Description 有一个a*b的整数组成的矩阵,现 ...
- 【BZOJ1047】[HAOI2007]理想的正方形
[BZOJ1047][HAOI2007]理想的正方形 题面 bzoj 洛谷 题解 二维\(st\)表,代码是以前的 #include<iostream> #include<cstdi ...
- 【BZOJ1047】[HAOI2007]理想的正方形 (倍增ST表)
[HAOI2007]理想的正方形 题目描述 有一个\(a*b\)的整数组成的矩阵,现请你从中找出一个\(n*n\)的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: ...
- 【BZOJ1047】[HAOI2007]理想的正方形(单调队列,动态规划)
[BZOJ1047][HAOI2007]理想的正方形(单调队列,动态规划) 题面 BZOJ 洛谷 题解 直接一个单调队列维护一下没给点和它前面的\(n\)个位置的最大值,再用一次单调队列维护连续\(n ...
随机推荐
- 01 java断言assert初步使用:断言开启、断言使用
参考文件:http://blog.sina.com.cn/s/blog_59c9412d0100fd55.html 1 说明 java断言assert是jdk1.4引入的. jvm断言默认是关闭的. ...
- MFC小程序
1.将菜单栏归零,工具栏放在窗口低部,加载自己新建的工具栏 CMainFrame::OnCreate()函数中 this->SetMenu(0); 2.将窗口初始化为最大化 APP类中:m_pM ...
- 手动去除uTorrent中广告的步骤(V3.4.9依然有效)
1.开打utorrent,依次点击选项->设置->高级. 在“高级”界面中,你会看到“过滤器”,在“过滤器”右侧的框中输入“offers”. 这时会在下面框中看到“offers.left_ ...
- Tags and Layers
[Tags and Layers] 1.tags and layers 配置面板."Edit" -> "Project Settings" -> & ...
- GCC笔记(警告.优化以及调试选项)
GCC提供了大量的警告选项,对代码中可能存在的问题提出警告,通常可以使用-Wall来开启以下警告: -Waddress -Warray-bounds (only with -O2) -Wc++0x-c ...
- Professional C# 6 and .NET Core 1.0 - Chapter 38 Entity Framework Core
本文内容为转载,重新排版以供学习研究.如有侵权,请联系作者删除. 转载请注明本文出处:Professional C# 6 and .NET Core 1.0 - Chapter 38 Entity F ...
- fastcgi_finish_request
本问原地址 http://www.phpddt.com/php/fastcgi_finish_request.html 某些操作,如用户注册后邮件发送,记录日志等一些耗时操作可以转化为异步操作!当PH ...
- 构造方法概念,自定义构造(init)方法的用途, 类工厂方法(就是直接用类名 类调用)
一. 构造方法 构造方法:在OC中init开头的方法, 我们称之为构造方法 构造方法的用途: 用于初始化一个对象, 让某个对象一创建出来就拥有某些属性和值 // 比如我们定义一个Person的类,然后 ...
- SSL认证
SSL认证 单向认证 1.发一串消息个对方 2.对方用私钥加密后返回 3.本方用对方的公钥解密,验证消息是否正确, 如果消息相同,则本方认可对方 双向认证 本方认证对方 对方认证本方
- 36.LEN() 函数
LEN() 函数 LEN 函数返回文本字段中值的长度. SQL LEN() 语法 SELECT LEN(column_name) FROM table_name SQL LEN() 实例 我们拥有下面 ...