City Game

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 8359    Accepted Submission(s): 3630

Problem Description
Bob is a strategy game programming specialist. In his new city building game the gaming environment is as follows: a city is built up by areas, in which there are streets, trees,factories and buildings. There is still some space in the area that is unoccupied. The strategic task of his game is to win as much rent money from these free spaces. To win rent money you must erect buildings, that can only be rectangular, as long and wide as you can. Bob is trying to find a way to build the biggest possible building in each area. But he comes across some problems – he is not allowed to destroy already existing buildings, trees, factories and streets in the area he is building in.

Each area has its width and length. The area is divided into a grid of equal square units.The rent paid for each unit on which you're building stands is 3$.

Your task is to help Bob solve this problem. The whole city is divided into K areas. Each one of the areas is rectangular and has a different grid size with its own length M and width N.The existing occupied units are marked with the symbol R. The unoccupied units are marked with the symbol F.

 
Input
The first line of the input contains an integer K – determining the number of datasets. Next lines contain the area descriptions. One description is defined in the following way: The first line contains two integers-area length M<=1000 and width N<=1000, separated by a blank space. The next M lines contain N symbols that mark the reserved or free grid units,separated by a blank space. The symbols used are:

R – reserved unit

F – free unit

In the end of each area description there is a separating line.

 
Output
For each data set in the input print on a separate line, on the standard output, the integer that represents the profit obtained by erecting the largest building in the area encoded by the data set.
 
Sample Input
2
5 6
R F F F F F
F F F F F F
R R R F F F
F F F F F F
F F F F F F

5 5
R R R R R
R R R R R
R R R R R
R R R R R
R R R R R

 
Sample Output
45 0

题意:给出一个矩阵,上面是可以用的土地和不能用的土地,要在上面选一块矩形的土地建房子,问最大能选多大的土地,土地每单位3块大洋,最后输出租金

核心是动态规划做的。

 #include<bits/stdc++.h>
using namespace std;
int a[][];
int l[],r[];
int main()
{
int k;
while(~scanf("%d",&k))
{
int m,n;
while(k--)
{
scanf("%d %d",&m,&n);
memset(a,,sizeof(a));
for(int i=; i<m; i++)
{
for(int j=; j<n; j++)
{
char c[];//以后输入字符 中间带空格的题目都可以直
cin>>c; // 接输入字符数组
if(c[]=='F') a[i][j]=;
}
}
for(int i=; i<m; i++)
{
for(int j=; j<n; j++)
{
if(a[i][j]!=) a[i][j]=a[i-][j]+;
}
}
int max=;
for(int i=; i<m; i++)//一行一行找过去,求最大面积
{
for(int j=; j<n; j++)
{
l[j]=j;
while(l[j]>&&a[i][l[j]-]>=a[i][j]) l[j]=l[l[j]-];//向左边,当前l[j]继承符合要求的前
} // 一个的左边界,动态规划的核心,因为前一个
for(int j=n-; j>-; j--) //点的高度大于当前点,所以前一个点的左边界,当前点可以直接继承使用
{
r[j]=j;
while(r[j]<n-&&a[i][r[j]+]>=a[i][j]) r[j]=r[r[j]+];//向右边,思路和左边界一样
}
for(int j=; j<n; j++)
if(max<((r[j]-l[j]+)*a[i][j])) max=((r[j]-l[j]+)*a[i][j]);//表示从当前点向左右延伸的矩形面积
}
printf("%d\n",max*);//每单位面积3块大洋 } }
return ;
}

hdu1505City Game(动态规划)的更多相关文章

  1. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  2. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  3. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  4. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  5. C#动态规划查找两个字符串最大子串

     //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {            ...

  6. C#递归、动态规划计算斐波那契数列

    //递归         public static long recurFib(int num)         {             if (num < 2)              ...

  7. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  8. 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划

    [BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...

  9. POJ 1163 The Triangle(简单动态规划)

    http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

随机推荐

  1. CentOS6.6上进程挂起的诡异问题和处理

    由于新的服务器不再支持CentOS5.4系统了,我们在新装机器上安装CentOS6.6.随着CentOS6.6机器的增多,我们逐渐注意到一个诡异问题:运行在这些机器上的某些进程,容易莫名其妙地挂起(举 ...

  2. NTU Long-Term Positioning Dataset

    NTU Long-Term Positioning Dataset 地址:http://www.clarenceliang.com/dataset/ 場景:NTU 博理館外廣場 描述:超過一個月連續拍 ...

  3. 【luogu P3384 树链剖分】 模板

    题目链接:https://www.luogu.org/problemnew/show/P3384 诶又给自己留了个坑..不想写线段树一大理由之前的模板变量名太长 #include <cstdio ...

  4. 掘金上发现的有趣web api

    本篇文章主要选取了几个有趣且有用的webapi进行介绍,分别介绍其用法.用处以及浏览器支持度 page lifecycle onlineState(网络状态) device orientation(陀 ...

  5. DB2表空间重定向恢复数据库实战

    DB2的备份恢复有点坑,当源系统和目标系统的路径设置不同时,要手动进行重定向恢复,本文是我一次实战操作之后总结的过程,仅供参考. 一.发出重定向恢复命令 DB2 RESTORE DB TO " ...

  6. view围绕圆心自转

    创建一个image UIImageView *imgView = [[UIImageView alloc] initWithFrame:CGRectMake(, , , )]; imgView.ima ...

  7. 数据库查询服务DBCacheServer

    各个业务系统,都需要查询各类数据库; 一般查询数据库都是客户端自己连接,根据现在的情况,存在以下几点问题 1.客户端连接很多,连接大小,峰值不可控 2.客户端SQL程序员自己写,参差不齐 3.SQL书 ...

  8. 2、开发环境搭建-window平台

    一.搭建ReactNative环境 首先安装node.js和python2.xx版本,不要装python3.xx,这个官方是特别说明的,请注意.NodeJs官方下载:https://nodejs.or ...

  9. Jensen 不等式

    若f(x)为区间I上的下凸(上凸)函数,则对于任意xi∈I和满足∑λi=1的λi>0(i=1,2,...,n),成立: \[f(\sum ^{n} _{i=1} \lambda _{i}x_{i ...

  10. yum仓库客户端搭建和NTP时间同步客户端配置

    一.yum仓库客户端搭建 yum源仓库搭建分为服务器端和客户端. 服务端主要提供软件(rpm包)和yumlist.也就是提供yum源的位置.一般是通过http或者ftp提供位置. 客户端的配置:yum ...