City Game

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 8359    Accepted Submission(s): 3630

Problem Description
Bob is a strategy game programming specialist. In his new city building game the gaming environment is as follows: a city is built up by areas, in which there are streets, trees,factories and buildings. There is still some space in the area that is unoccupied. The strategic task of his game is to win as much rent money from these free spaces. To win rent money you must erect buildings, that can only be rectangular, as long and wide as you can. Bob is trying to find a way to build the biggest possible building in each area. But he comes across some problems – he is not allowed to destroy already existing buildings, trees, factories and streets in the area he is building in.

Each area has its width and length. The area is divided into a grid of equal square units.The rent paid for each unit on which you're building stands is 3$.

Your task is to help Bob solve this problem. The whole city is divided into K areas. Each one of the areas is rectangular and has a different grid size with its own length M and width N.The existing occupied units are marked with the symbol R. The unoccupied units are marked with the symbol F.

 
Input
The first line of the input contains an integer K – determining the number of datasets. Next lines contain the area descriptions. One description is defined in the following way: The first line contains two integers-area length M<=1000 and width N<=1000, separated by a blank space. The next M lines contain N symbols that mark the reserved or free grid units,separated by a blank space. The symbols used are:

R – reserved unit

F – free unit

In the end of each area description there is a separating line.

 
Output
For each data set in the input print on a separate line, on the standard output, the integer that represents the profit obtained by erecting the largest building in the area encoded by the data set.
 
Sample Input
2
5 6
R F F F F F
F F F F F F
R R R F F F
F F F F F F
F F F F F F

5 5
R R R R R
R R R R R
R R R R R
R R R R R
R R R R R

 
Sample Output
45 0

题意:给出一个矩阵,上面是可以用的土地和不能用的土地,要在上面选一块矩形的土地建房子,问最大能选多大的土地,土地每单位3块大洋,最后输出租金

核心是动态规划做的。

 #include<bits/stdc++.h>
using namespace std;
int a[][];
int l[],r[];
int main()
{
int k;
while(~scanf("%d",&k))
{
int m,n;
while(k--)
{
scanf("%d %d",&m,&n);
memset(a,,sizeof(a));
for(int i=; i<m; i++)
{
for(int j=; j<n; j++)
{
char c[];//以后输入字符 中间带空格的题目都可以直
cin>>c; // 接输入字符数组
if(c[]=='F') a[i][j]=;
}
}
for(int i=; i<m; i++)
{
for(int j=; j<n; j++)
{
if(a[i][j]!=) a[i][j]=a[i-][j]+;
}
}
int max=;
for(int i=; i<m; i++)//一行一行找过去,求最大面积
{
for(int j=; j<n; j++)
{
l[j]=j;
while(l[j]>&&a[i][l[j]-]>=a[i][j]) l[j]=l[l[j]-];//向左边,当前l[j]继承符合要求的前
} // 一个的左边界,动态规划的核心,因为前一个
for(int j=n-; j>-; j--) //点的高度大于当前点,所以前一个点的左边界,当前点可以直接继承使用
{
r[j]=j;
while(r[j]<n-&&a[i][r[j]+]>=a[i][j]) r[j]=r[r[j]+];//向右边,思路和左边界一样
}
for(int j=; j<n; j++)
if(max<((r[j]-l[j]+)*a[i][j])) max=((r[j]-l[j]+)*a[i][j]);//表示从当前点向左右延伸的矩形面积
}
printf("%d\n",max*);//每单位面积3块大洋 } }
return ;
}

hdu1505City Game(动态规划)的更多相关文章

  1. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  2. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  3. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  4. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  5. C#动态规划查找两个字符串最大子串

     //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {            ...

  6. C#递归、动态规划计算斐波那契数列

    //递归         public static long recurFib(int num)         {             if (num < 2)              ...

  7. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  8. 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划

    [BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...

  9. POJ 1163 The Triangle(简单动态规划)

    http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

随机推荐

  1. POJ 3185 The Water Bowls 【一维开关问题 高斯消元】

    任意门:http://poj.org/problem?id=3185 The Water Bowls Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  2. js数组、字符串常用方法

    数组方面 push:向数组尾部增加内容,返回的是新数组的长度. var arr = [1,2,3]; console.log(arr); var b = arr.push(4); console.lo ...

  3. Docker 安装tomcat7

    [root@VM_0_7_centos ~]# docker pull tomcat:7-jre7 [root@VM_0_7_centos ~]# docker run -di --name=tomc ...

  4. Validform 基于表单验证

    <%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding= ...

  5. putty 启动 linux 下的oracle

    没搞过linux ,仅作记录: 1 打开putty.exe 程序 ,选择 连接 2 输入linux 的用户名和密码后,按下图操作: 3  启动监听 4 命令总结: 1.  sudo su - orac ...

  6. Spring知识点总结(三)之注解方式实现IOC和DI

        1. 注解概念        所谓注解就是给程序看的提示信息,很多时候都用来作为轻量级配置的方式.        关于注解的知识点,参看java基础课程中java基础加强部分的内容.    2 ...

  7. Oracle块修改跟踪功能

    块修改跟踪功能是指使用二进制文件记录数据库中数据库更改的过程. 其目的是提高增量备份操作的性能,因为RMAN可以使用快修改跟踪文件找到上次执行备份操作后被修改的数据块.这可以节省大量时间,因为如果不这 ...

  8. 实践笔记-VA05 销售订单清单 增加字段

    现在都自开发很多报表 ,估计没有多少人 用  VA05 1.在结构 VBMTVZ 中增加需要的字段 2.表t180a 中  添加一条 “添加字段”的数据,如下: 3.取值 修改程序 INCLUDE V ...

  9. Percona-Tookit工具包之pt-online-schema-change

      Preface       As we all know,it's really a troublesome thing to DBA in scenario of changing table ...

  10. MySQL 字符串函数:字符串截取

    1.left(name,4)截取左边的4个字符 列: ,) 年 结果:2018 2.right(name,2)截取右边的2个字符 ,) 月份 结果:09 3.SUBSTRING(name,5,3) 截 ...