Description

'Oh no, they've done it again', cries the chief designer at the Waferland chip factory. Once more the routing designers have screwed up completely, making the signals on the chip connecting the ports of two functional blocks cross
each other all over the place. At this late stage of the process, it is too 

expensive to redo the routing. Instead, the engineers have to bridge the signals, using the third dimension, so that no two signals cross. However, bridging is a complicated operation, and thus it is desirable to bridge as few signals as possible. The call
for a computer program that finds the maximum number of signals which may be connected on the silicon surface without rossing each other, is imminent. Bearing in mind that there may be housands of signal ports at the boundary of a functional block, the problem
asks quite a lot of the programmer. Are you up to the task?



Figure 1. To the left: The two blocks' ports and their signal mapping (4,2,6,3,1,5). To the right: At most three signals may be routed on the silicon surface without crossing each other. The dashed signals must be bridged. 



A typical situation is schematically depicted in figure 1. The ports of the two functional blocks are numbered from 1 to p, from top to bottom. The signal mapping is described by a permutation of the numbers 1 to p in the form of a list of p unique numbers
in the range 1 to p, in which the i:th number pecifies which port on the right side should be connected to the i:th port on the left side. 

Two signals cross if and only if the straight lines connecting the two ports of each pair do.

 

Input

On the first line of the input, there is a single positive integer n, telling the number of test scenarios to follow. Each test scenario begins with a line containing a single positive integer p<40000, the number of ports on the two
functional blocks. Then follow p lines, describing the signal mapping: On the i:th line is the port number of the block on the right side which should be connected to the i:th port of the block on the left side.
 

Output

For each test scenario, output one line containing the maximum number of signals which may be routed on the silicon surface without crossing each other.
 

Sample Input

4
6
4 2 6 3 1 5
10 
2 3 4 5 6 7 8 9 10 1
8 7 6 5 4 3 2 1
5 8 9 2 3 1 7 4 6
 

Sample Output

3
9
1
4
 

题目本质::求最长上升子序列(这里没有反复数字)。

我们有两种思路求能够參考shuoj上的D序列的题目。这里给出题目的题解链接::shuojD序列

主要是两种思路::(1)lower_bound(2)二分法,假设认为代码不易理解能够点上面的链接

两种方法的思路是一样的。

将数组A中子序列长度为 i 的最小值存放在数组S中。我们以3 2 4 6  5 7 3 为例进行演示行为遍历,列为数组S。变化的地方已经标出来,有助于理解。

在这里a[ i ] > s[ j ]&&a[i]<=s[ j + 1 ]就应该把a[ i ]放在s[ j+1 ]的位置。

所以关键就是找出 j 就知道把a[ i ]放在哪了。

上面的两种方法就是用来寻找 j的

(在这里lower_bound直接返回 j + 1 )

我们能够发现s数组中的值必定是有序递增的。这也是能够利用二分法的一个必要条件。

演示
0 1 2 3 4
1 3      
2 2      
3 2 4    
4 2 4 6  
5 2 4 5  
6 2 4 5 7
7 2 3 5 7
         

这里给出另外一种方法代码::

#include <iostream>
#include<cstring>
#include <algorithm>
#define INF 0x3f3f3f3f
using namespace std;
const int N = 1e5 + 5;
int s[N];
int n,p,a[N];
int len;
int main()
{
cin>>n;
while(n--){
cin>>p;
memset(s,0,sizeof(s));
for(int i = 0;i<p;i++)cin>>a[i];
s[1] = a[0];len = 1;//长度从1開始
for(int i = 1;i<p;i++){ int t = a[i];
if(t>s[len])s[++len] = a[i];
else{
/*************/int l = 1,r = len,mid;//这里的二分法採用了左闭右闭的思路
<span style="white-space:pre"> </span>int ans = 0;
while(l<=r)
{
mid = (l+r)/2;
if(s[mid]<t)
{l = mid +1;ans = max(ans,mid);}//ans即为思路中的j,j必定为s数组中小于t的最大的数
else r = mid-1;
}
s[ans+1] = t;/******************/
}
}
//for(int i = 1;i<p;i++){cout<<s[i];}//有必要能够打开看看s中存的是什么值
cout<<len<<endl;
}
return 0;
}

假设代码不易理解请点击链接,链接为::shuoj—D序列

第一种的代码仅仅要将两个/**************/之间的代码换为

int p = lower_bound(s+1,s+len+1,t)-s;
s[p] = t;

就能够了。

HDU1950-Bridging signals-最长上升子序列的更多相关文章

  1. hdu----(1950)Bridging signals(最长递增子序列 (LIS) )

    Bridging signals Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  2. hdu1950 Bridging signals 最长递增子序列

    用一个数组记下递增子序列长度为i时最小的len[i],不断更新len数组,最大的i即为最长递增子序列的长度 #include<cstdio> #include<algorithm&g ...

  3. POJ3903Stock Exchange&&POJ1631Bridging signals最长上升子序列 &&POJ1887Testing the CATCHER(最长下降子序列)(LIS模版题)

    题目链接:http://poj.org/problem?id=3903 题目链接:http://poj.org/problem?id=1631 题目链接:http://poj.org/problem? ...

  4. hdu1950 Bridging signals

    LIS nlogn的时间复杂度,之前没有写过. 思路是d[i]保存长度为i的单调不下降子序列末尾的最小值. 更新时候,如果a[i]>d[len],(len为目前最长的单调不下降子序列) d[++ ...

  5. dp之最长上升子序列

    普通做法是O(n^2)下面介绍:最长上升子序列O(nlogn)算法(http://blog.csdn.net/shuangde800/article/details/7474903) /* HDU 1 ...

  6. 最长上升子序列(LIS)长度的O(nlogn)算法

    最长上升子序列(LIS)的典型变形,熟悉的n^2的动归会超时.LIS问题可以优化为nlogn的算法.定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则记录最小的那个最末元素 ...

  7. Bridging signals(NlogN最长上升子序列)

    Bridging signals Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  8. poj 1631 Bridging signals (二分||DP||最长递增子序列)

    Bridging signals Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9234   Accepted: 5037 ...

  9. (hdu)1950 Bridging signals(最长上升子序列)

    Problem Description 'Oh no, they've done it again', cries the chief designer at the Waferland chip f ...

  10. POJ 1631 Bridging signals DP(最长上升子序列)

    最近一直在做<挑战程序设计竞赛>的练习题,感觉好多经典的题,都值得记录. 题意:给你t组数据,每组数组有n个数字,求每组的最长上升子序列的长度. 思路:由于n最大为40000,所以n*n的 ...

随机推荐

  1. event.returnvalue = false的使用

    event.returnvalue false代表不接收事件返回值 <script language="JavaScript"> //Ctrl+s保存 document ...

  2. 设计模式之简单工厂模式(C#语言描述)

    严格意义上来说,简单工厂模式并不属于GoF的23种设计模式,但是它是学习其他工厂模式的基础和前提条件.理解了简单工厂模式,学习工厂方法模式和抽象工厂模式会比较容易一些. 简单工厂模式的定义 定义一个工 ...

  3. 【CODEFORCES】 C. Table Decorations

    C. Table Decorations time limit per test 1 second memory limit per test 256 megabytes input standard ...

  4. HDU 3861 The King’s Problem(强连通+二分图最小路径覆盖)

    HDU 3861 The King's Problem 题目链接 题意:给定一个有向图,求最少划分成几个部分满足以下条件 互相可达的点必须分到一个集合 一个对点(u, v)必须至少有u可达v或者v可达 ...

  5. SourceTree代码管理学习git命令操作

    Git管理工具SourceTree提交代码时报文件名过长,用命令解决这个错误: 使用git status查看状态信息 git status 使用git add将修改后的文件(.代表全部文件)添加到暂存 ...

  6. CAN总线过滤规则

    奇怪的设计 If (AFMR & Message_ID) == (AFMR & AFIR) then Capture Message AFIR 1 接收 AFMR 0 接收 设置某接收 ...

  7. IOS MagicRecord 详解 (转载)

    2014-10-22 14:37 6137人阅读 评论(6) 收藏 举报 IOSMagicRecordCoreData 目录(?)[+] 刚开始接触IOS不久,尝试着翻译一些博客,积累技术,与大家共享 ...

  8. Json介绍以及解析Json

    首先,介绍一下Json字串,以下Json的介绍引用网上资料. 简单地说,JSON 可以将 JavaScript 对象中表示的一组数据转换为字符串,然后就可以在函数之间轻松地传递这个字符串,或者在异步应 ...

  9. text-encoding正确使用姿势

    蓝牙打印,需要转字符串为gb2312到uint8array.果断使用了一把text-encoding,始终不对. https://github.com/inexorabletash/text-enco ...

  10. hdu1018 Big Number 斯特林公式 求N!的位数。

    Big Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...