Description

'Oh no, they've done it again', cries the chief designer at the Waferland chip factory. Once more the routing designers have screwed up completely, making the signals on the chip connecting the ports of two functional blocks cross
each other all over the place. At this late stage of the process, it is too 

expensive to redo the routing. Instead, the engineers have to bridge the signals, using the third dimension, so that no two signals cross. However, bridging is a complicated operation, and thus it is desirable to bridge as few signals as possible. The call
for a computer program that finds the maximum number of signals which may be connected on the silicon surface without rossing each other, is imminent. Bearing in mind that there may be housands of signal ports at the boundary of a functional block, the problem
asks quite a lot of the programmer. Are you up to the task?



Figure 1. To the left: The two blocks' ports and their signal mapping (4,2,6,3,1,5). To the right: At most three signals may be routed on the silicon surface without crossing each other. The dashed signals must be bridged. 



A typical situation is schematically depicted in figure 1. The ports of the two functional blocks are numbered from 1 to p, from top to bottom. The signal mapping is described by a permutation of the numbers 1 to p in the form of a list of p unique numbers
in the range 1 to p, in which the i:th number pecifies which port on the right side should be connected to the i:th port on the left side. 

Two signals cross if and only if the straight lines connecting the two ports of each pair do.

 

Input

On the first line of the input, there is a single positive integer n, telling the number of test scenarios to follow. Each test scenario begins with a line containing a single positive integer p<40000, the number of ports on the two
functional blocks. Then follow p lines, describing the signal mapping: On the i:th line is the port number of the block on the right side which should be connected to the i:th port of the block on the left side.
 

Output

For each test scenario, output one line containing the maximum number of signals which may be routed on the silicon surface without crossing each other.
 

Sample Input

4
6
4 2 6 3 1 5
10 
2 3 4 5 6 7 8 9 10 1
8 7 6 5 4 3 2 1
5 8 9 2 3 1 7 4 6
 

Sample Output

3
9
1
4
 

题目本质::求最长上升子序列(这里没有反复数字)。

我们有两种思路求能够參考shuoj上的D序列的题目。这里给出题目的题解链接::shuojD序列

主要是两种思路::(1)lower_bound(2)二分法,假设认为代码不易理解能够点上面的链接

两种方法的思路是一样的。

将数组A中子序列长度为 i 的最小值存放在数组S中。我们以3 2 4 6  5 7 3 为例进行演示行为遍历,列为数组S。变化的地方已经标出来,有助于理解。

在这里a[ i ] > s[ j ]&&a[i]<=s[ j + 1 ]就应该把a[ i ]放在s[ j+1 ]的位置。

所以关键就是找出 j 就知道把a[ i ]放在哪了。

上面的两种方法就是用来寻找 j的

(在这里lower_bound直接返回 j + 1 )

我们能够发现s数组中的值必定是有序递增的。这也是能够利用二分法的一个必要条件。

演示
0 1 2 3 4
1 3      
2 2      
3 2 4    
4 2 4 6  
5 2 4 5  
6 2 4 5 7
7 2 3 5 7
         

这里给出另外一种方法代码::

#include <iostream>
#include<cstring>
#include <algorithm>
#define INF 0x3f3f3f3f
using namespace std;
const int N = 1e5 + 5;
int s[N];
int n,p,a[N];
int len;
int main()
{
cin>>n;
while(n--){
cin>>p;
memset(s,0,sizeof(s));
for(int i = 0;i<p;i++)cin>>a[i];
s[1] = a[0];len = 1;//长度从1開始
for(int i = 1;i<p;i++){ int t = a[i];
if(t>s[len])s[++len] = a[i];
else{
/*************/int l = 1,r = len,mid;//这里的二分法採用了左闭右闭的思路
<span style="white-space:pre"> </span>int ans = 0;
while(l<=r)
{
mid = (l+r)/2;
if(s[mid]<t)
{l = mid +1;ans = max(ans,mid);}//ans即为思路中的j,j必定为s数组中小于t的最大的数
else r = mid-1;
}
s[ans+1] = t;/******************/
}
}
//for(int i = 1;i<p;i++){cout<<s[i];}//有必要能够打开看看s中存的是什么值
cout<<len<<endl;
}
return 0;
}

假设代码不易理解请点击链接,链接为::shuoj—D序列

第一种的代码仅仅要将两个/**************/之间的代码换为

int p = lower_bound(s+1,s+len+1,t)-s;
s[p] = t;

就能够了。

HDU1950-Bridging signals-最长上升子序列的更多相关文章

  1. hdu----(1950)Bridging signals(最长递增子序列 (LIS) )

    Bridging signals Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  2. hdu1950 Bridging signals 最长递增子序列

    用一个数组记下递增子序列长度为i时最小的len[i],不断更新len数组,最大的i即为最长递增子序列的长度 #include<cstdio> #include<algorithm&g ...

  3. POJ3903Stock Exchange&&POJ1631Bridging signals最长上升子序列 &&POJ1887Testing the CATCHER(最长下降子序列)(LIS模版题)

    题目链接:http://poj.org/problem?id=3903 题目链接:http://poj.org/problem?id=1631 题目链接:http://poj.org/problem? ...

  4. hdu1950 Bridging signals

    LIS nlogn的时间复杂度,之前没有写过. 思路是d[i]保存长度为i的单调不下降子序列末尾的最小值. 更新时候,如果a[i]>d[len],(len为目前最长的单调不下降子序列) d[++ ...

  5. dp之最长上升子序列

    普通做法是O(n^2)下面介绍:最长上升子序列O(nlogn)算法(http://blog.csdn.net/shuangde800/article/details/7474903) /* HDU 1 ...

  6. 最长上升子序列(LIS)长度的O(nlogn)算法

    最长上升子序列(LIS)的典型变形,熟悉的n^2的动归会超时.LIS问题可以优化为nlogn的算法.定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则记录最小的那个最末元素 ...

  7. Bridging signals(NlogN最长上升子序列)

    Bridging signals Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  8. poj 1631 Bridging signals (二分||DP||最长递增子序列)

    Bridging signals Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9234   Accepted: 5037 ...

  9. (hdu)1950 Bridging signals(最长上升子序列)

    Problem Description 'Oh no, they've done it again', cries the chief designer at the Waferland chip f ...

  10. POJ 1631 Bridging signals DP(最长上升子序列)

    最近一直在做<挑战程序设计竞赛>的练习题,感觉好多经典的题,都值得记录. 题意:给你t组数据,每组数组有n个数字,求每组的最长上升子序列的长度. 思路:由于n最大为40000,所以n*n的 ...

随机推荐

  1. SVN环境搭建(1)

    原文地址:http://www.penglig.com/post-72.html Subversion 是优秀的版本控制工具,其具体的的优点和详细介绍,这里就不再多说. 首先来下载和搭建 SVN 服务 ...

  2. Mysql中处理1970年前的日期(unixtime为负数的情况)负数时间戳格式化

    客户扔过来一个bug,说是一个系统中对42岁以上的人的统计不正确,而41岁以下的人没有问题.眼睛瞟了一下托盘区里的日期,2012年3月26日,嗯,今年42岁的话,那么应该就是出生在1970年左右,马上 ...

  3. php常见的类库-文件操作类

    工作中经常用php操作文件,因此把常用文件操作整理出来: class hylaz_file{ /** * Read file * @param string $pathname * @return s ...

  4. CentOS 6.5 X64 U盘启动盘制作

    本教程是在Linux系统下制件,可以使用虚拟机安装Linux 1.准备一个8G的U盘,在Linux下分成Fat32---500M----root, 剩下的分成Ext3 ----data,并格式化. 2 ...

  5. Atitit.导出excel报表的设计与实现java .net php 总

    Atitit.导出excel报表的设计与实现java .net php 总结 1. 导出报表 表格的设计要素1 1.1. 支持通用list<Map>转换1 1.2. 对于空列是否输出1 1 ...

  6. UML类图详解_关联关系_多对多

    在关联关系中,很多情况下我们的多重性并不是多对一或者一对多的,而是多对多的. 不过因为我们要考虑里面的导航性,如果直接搞的话就是需要去维护两群对象之间多对多的互指链接,这就十分繁杂且易错.那么我们怎么 ...

  7. 75. Find Peak Element 【medium】

    75. Find Peak Element [medium] There is an integer array which has the following features: The numbe ...

  8. spring boot 多层级mapper

    mapper目录结构:   mapper ----dev -------produce   在 application.properties 文件中配置 mybatis.mapper-location ...

  9. Windows 7 SP1和Windows Server 2008 SP1的Event ID 10错误的解决方法

    安装了Windows 7 Service Pack 1 (SP1) 或 Windows Server 2008 R2 Service Pack 1 (SP1)都会遇到此错误提示. "Even ...

  10. PLSQL配置数据库的方式

    1.直接连接的方式   2.修改客户端D:\app\Administrator\product\11.2.0\client_1\network\admin\tnsnames.ora文件的方式. ora ...