HDU1950-Bridging signals-最长上升子序列
Description
each other all over the place. At this late stage of the process, it is too
expensive to redo the routing. Instead, the engineers have to bridge the signals, using the third dimension, so that no two signals cross. However, bridging is a complicated operation, and thus it is desirable to bridge as few signals as possible. The call
for a computer program that finds the maximum number of signals which may be connected on the silicon surface without rossing each other, is imminent. Bearing in mind that there may be housands of signal ports at the boundary of a functional block, the problem
asks quite a lot of the programmer. Are you up to the task?
Figure 1. To the left: The two blocks' ports and their signal mapping (4,2,6,3,1,5). To the right: At most three signals may be routed on the silicon surface without crossing each other. The dashed signals must be bridged.
A typical situation is schematically depicted in figure 1. The ports of the two functional blocks are numbered from 1 to p, from top to bottom. The signal mapping is described by a permutation of the numbers 1 to p in the form of a list of p unique numbers
in the range 1 to p, in which the i:th number pecifies which port on the right side should be connected to the i:th port on the left side.
Two signals cross if and only if the straight lines connecting the two ports of each pair do.
Input
functional blocks. Then follow p lines, describing the signal mapping: On the i:th line is the port number of the block on the right side which should be connected to the i:th port of the block on the left side.
Output
Sample Input
4
64 2 6 3 1 5
102 3 4 5 6 7 8 9 10 1
88 7 6 5 4 3 2 1
95 8 9 2 3 1 7 4 6
Sample Output
3
9
1
4
题目本质::求最长上升子序列(这里没有反复数字)。
我们有两种思路求能够參考shuoj上的D序列的题目。这里给出题目的题解链接::shuojD序列
主要是两种思路::(1)lower_bound(2)二分法,假设认为代码不易理解能够点上面的链接
将数组A中子序列长度为 i 的最小值存放在数组S中。我们以3 2 4 6 5 7 3 为例进行演示行为遍历,列为数组S。变化的地方已经标出来,有助于理解。
在这里a[ i ] > s[ j ]&&a[i]<=s[ j + 1 ]就应该把a[ i ]放在s[ j+1 ]的位置。
所以关键就是找出 j 就知道把a[ i ]放在哪了。
上面的两种方法就是用来寻找 j的
。
(在这里lower_bound直接返回 j + 1 )
0 | 1 | 2 | 3 | 4 |
1 | 3 | |||
2 | 2 | |||
3 | 2 | 4 | ||
4 | 2 | 4 | 6 | |
5 | 2 | 4 | 5 | |
6 | 2 | 4 | 5 | 7 |
7 | 2 | 3 | 5 | 7 |
这里给出另外一种方法代码::
#include <iostream>
#include<cstring>
#include <algorithm>
#define INF 0x3f3f3f3f
using namespace std;
const int N = 1e5 + 5;
int s[N];
int n,p,a[N];
int len;
int main()
{
cin>>n;
while(n--){
cin>>p;
memset(s,0,sizeof(s));
for(int i = 0;i<p;i++)cin>>a[i];
s[1] = a[0];len = 1;//长度从1開始
for(int i = 1;i<p;i++){ int t = a[i];
if(t>s[len])s[++len] = a[i];
else{
/*************/int l = 1,r = len,mid;//这里的二分法採用了左闭右闭的思路
<span style="white-space:pre"> </span>int ans = 0;
while(l<=r)
{
mid = (l+r)/2;
if(s[mid]<t)
{l = mid +1;ans = max(ans,mid);}//ans即为思路中的j,j必定为s数组中小于t的最大的数
else r = mid-1;
}
s[ans+1] = t;/******************/
}
}
//for(int i = 1;i<p;i++){cout<<s[i];}//有必要能够打开看看s中存的是什么值
cout<<len<<endl;
}
return 0;
}
假设代码不易理解请点击链接,链接为::shuoj—D序列
第一种的代码仅仅要将两个/**************/之间的代码换为
int p = lower_bound(s+1,s+len+1,t)-s;
s[p] = t;
就能够了。
HDU1950-Bridging signals-最长上升子序列的更多相关文章
- hdu----(1950)Bridging signals(最长递增子序列 (LIS) )
Bridging signals Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- hdu1950 Bridging signals 最长递增子序列
用一个数组记下递增子序列长度为i时最小的len[i],不断更新len数组,最大的i即为最长递增子序列的长度 #include<cstdio> #include<algorithm&g ...
- POJ3903Stock Exchange&&POJ1631Bridging signals最长上升子序列 &&POJ1887Testing the CATCHER(最长下降子序列)(LIS模版题)
题目链接:http://poj.org/problem?id=3903 题目链接:http://poj.org/problem?id=1631 题目链接:http://poj.org/problem? ...
- hdu1950 Bridging signals
LIS nlogn的时间复杂度,之前没有写过. 思路是d[i]保存长度为i的单调不下降子序列末尾的最小值. 更新时候,如果a[i]>d[len],(len为目前最长的单调不下降子序列) d[++ ...
- dp之最长上升子序列
普通做法是O(n^2)下面介绍:最长上升子序列O(nlogn)算法(http://blog.csdn.net/shuangde800/article/details/7474903) /* HDU 1 ...
- 最长上升子序列(LIS)长度的O(nlogn)算法
最长上升子序列(LIS)的典型变形,熟悉的n^2的动归会超时.LIS问题可以优化为nlogn的算法.定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则记录最小的那个最末元素 ...
- Bridging signals(NlogN最长上升子序列)
Bridging signals Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- poj 1631 Bridging signals (二分||DP||最长递增子序列)
Bridging signals Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9234 Accepted: 5037 ...
- (hdu)1950 Bridging signals(最长上升子序列)
Problem Description 'Oh no, they've done it again', cries the chief designer at the Waferland chip f ...
- POJ 1631 Bridging signals DP(最长上升子序列)
最近一直在做<挑战程序设计竞赛>的练习题,感觉好多经典的题,都值得记录. 题意:给你t组数据,每组数组有n个数字,求每组的最长上升子序列的长度. 思路:由于n最大为40000,所以n*n的 ...
随机推荐
- JanusGraph的schema及数据建模
每个JanusGraph都有一个schema,该schema由edge labels, property keys和vertex labels组成.JanusGraph的schema可以显式或隐式创建 ...
- 在Windows Python3.5 安装LightGBM
LightGBM是微软旗下DMTK推出的Gradient Boosting框架,因为其快速高效,以后或许会成为数据挖掘竞赛中的又一个大杀器.地址:https://github.com/Microsof ...
- Atitit.attilax的 case list 项目经验 案例列表
Atitit.attilax的 case list 项目经验 案例列表 1. Atian inputmethod 输入法3 2. Ati desktop engine桌面引擎3 3. Acc资金账户系 ...
- 网页webbrowser
http://www.codeproject.com/Articles/50544/Using-the-WebBrowser-Control-in-ASP-NET/
- win10虚拟环境安装scrapy
说明:本人用的是python3.6版本,64位系统. 第一步:创建并激活虚拟环境 virtualenv scrapy scrapy\Scripts\activate 第二步:安装lxml pip in ...
- java - day15 - nstInner
匿名内部类 package com.javatest.mama; public class Mama { int x = 5; public static void main(String[] arg ...
- waterfall.js
jq-waterfall是一款仿Pinterest网站的响应式无限动态加载图片瀑布流特效jQuery插件.该瀑布流特效使用ajax调用来动态加载图片,达到无限加载的效果.它使用简单,兼容性好,值得推荐 ...
- UI-10-plist文件及UITableView的高级应用①
课程要点: plist文件的新建与读取 给UITableView设置变化的值 单元格的删除.插入及刷新 plist文件的新建与读取 新建plist Commadn+N,iOS->Resouce- ...
- 华为终端开放实验室Android Beta 4测试能力上线
7月26日,Android P Beta 4发布(即Android P DP5),此版本为开发者最后一个预览版本,也预示着Android P正式版即将与大家见面. 为保证开发者在正式版本来临前做 ...
- mysql 索引优化,索引建立原则和不走索引的原因
第一:选择唯一性索引 唯一性索引的值是唯一的,可以更快捷的通过该索引来确定某条记录. 2.索引的列为where 后面经常作为条件的字段建立索引 如果某个字段经常作为查询条件,而且又有较少的重复列或者是 ...