HDU1950-Bridging signals-最长上升子序列
Description
each other all over the place. At this late stage of the process, it is too
expensive to redo the routing. Instead, the engineers have to bridge the signals, using the third dimension, so that no two signals cross. However, bridging is a complicated operation, and thus it is desirable to bridge as few signals as possible. The call
for a computer program that finds the maximum number of signals which may be connected on the silicon surface without rossing each other, is imminent. Bearing in mind that there may be housands of signal ports at the boundary of a functional block, the problem
asks quite a lot of the programmer. Are you up to the task?
Figure 1. To the left: The two blocks' ports and their signal mapping (4,2,6,3,1,5). To the right: At most three signals may be routed on the silicon surface without crossing each other. The dashed signals must be bridged.
A typical situation is schematically depicted in figure 1. The ports of the two functional blocks are numbered from 1 to p, from top to bottom. The signal mapping is described by a permutation of the numbers 1 to p in the form of a list of p unique numbers
in the range 1 to p, in which the i:th number pecifies which port on the right side should be connected to the i:th port on the left side.
Two signals cross if and only if the straight lines connecting the two ports of each pair do.
Input
functional blocks. Then follow p lines, describing the signal mapping: On the i:th line is the port number of the block on the right side which should be connected to the i:th port of the block on the left side.
Output
Sample Input
4
64 2 6 3 1 5
102 3 4 5 6 7 8 9 10 1
88 7 6 5 4 3 2 1
95 8 9 2 3 1 7 4 6
Sample Output
3
9
1
4
题目本质::求最长上升子序列(这里没有反复数字)。
我们有两种思路求能够參考shuoj上的D序列的题目。这里给出题目的题解链接::shuojD序列
主要是两种思路::(1)lower_bound(2)二分法,假设认为代码不易理解能够点上面的链接
将数组A中子序列长度为 i 的最小值存放在数组S中。我们以3 2 4 6 5 7 3 为例进行演示行为遍历,列为数组S。变化的地方已经标出来,有助于理解。
在这里a[ i ] > s[ j ]&&a[i]<=s[ j + 1 ]就应该把a[ i ]放在s[ j+1 ]的位置。
所以关键就是找出 j 就知道把a[ i ]放在哪了。
上面的两种方法就是用来寻找 j的
。
(在这里lower_bound直接返回 j + 1 )
| 0 | 1 | 2 | 3 | 4 |
| 1 | 3 | |||
| 2 | 2 | |||
| 3 | 2 | 4 | ||
| 4 | 2 | 4 | 6 | |
| 5 | 2 | 4 | 5 | |
| 6 | 2 | 4 | 5 | 7 |
| 7 | 2 | 3 | 5 | 7 |
这里给出另外一种方法代码::
#include <iostream>
#include<cstring>
#include <algorithm>
#define INF 0x3f3f3f3f
using namespace std;
const int N = 1e5 + 5;
int s[N];
int n,p,a[N];
int len;
int main()
{
cin>>n;
while(n--){
cin>>p;
memset(s,0,sizeof(s));
for(int i = 0;i<p;i++)cin>>a[i];
s[1] = a[0];len = 1;//长度从1開始
for(int i = 1;i<p;i++){ int t = a[i];
if(t>s[len])s[++len] = a[i];
else{
/*************/int l = 1,r = len,mid;//这里的二分法採用了左闭右闭的思路
<span style="white-space:pre"> </span>int ans = 0;
while(l<=r)
{
mid = (l+r)/2;
if(s[mid]<t)
{l = mid +1;ans = max(ans,mid);}//ans即为思路中的j,j必定为s数组中小于t的最大的数
else r = mid-1;
}
s[ans+1] = t;/******************/
}
}
//for(int i = 1;i<p;i++){cout<<s[i];}//有必要能够打开看看s中存的是什么值
cout<<len<<endl;
}
return 0;
}
假设代码不易理解请点击链接,链接为::shuoj—D序列
第一种的代码仅仅要将两个/**************/之间的代码换为
int p = lower_bound(s+1,s+len+1,t)-s;
s[p] = t;
就能够了。
HDU1950-Bridging signals-最长上升子序列的更多相关文章
- hdu----(1950)Bridging signals(最长递增子序列 (LIS) )
Bridging signals Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- hdu1950 Bridging signals 最长递增子序列
用一个数组记下递增子序列长度为i时最小的len[i],不断更新len数组,最大的i即为最长递增子序列的长度 #include<cstdio> #include<algorithm&g ...
- POJ3903Stock Exchange&&POJ1631Bridging signals最长上升子序列 &&POJ1887Testing the CATCHER(最长下降子序列)(LIS模版题)
题目链接:http://poj.org/problem?id=3903 题目链接:http://poj.org/problem?id=1631 题目链接:http://poj.org/problem? ...
- hdu1950 Bridging signals
LIS nlogn的时间复杂度,之前没有写过. 思路是d[i]保存长度为i的单调不下降子序列末尾的最小值. 更新时候,如果a[i]>d[len],(len为目前最长的单调不下降子序列) d[++ ...
- dp之最长上升子序列
普通做法是O(n^2)下面介绍:最长上升子序列O(nlogn)算法(http://blog.csdn.net/shuangde800/article/details/7474903) /* HDU 1 ...
- 最长上升子序列(LIS)长度的O(nlogn)算法
最长上升子序列(LIS)的典型变形,熟悉的n^2的动归会超时.LIS问题可以优化为nlogn的算法.定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则记录最小的那个最末元素 ...
- Bridging signals(NlogN最长上升子序列)
Bridging signals Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- poj 1631 Bridging signals (二分||DP||最长递增子序列)
Bridging signals Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9234 Accepted: 5037 ...
- (hdu)1950 Bridging signals(最长上升子序列)
Problem Description 'Oh no, they've done it again', cries the chief designer at the Waferland chip f ...
- POJ 1631 Bridging signals DP(最长上升子序列)
最近一直在做<挑战程序设计竞赛>的练习题,感觉好多经典的题,都值得记录. 题意:给你t组数据,每组数组有n个数字,求每组的最长上升子序列的长度. 思路:由于n最大为40000,所以n*n的 ...
随机推荐
- js遮罩层弹出显示效果组件化
1.在web开发中经常遇到遮罩层的效果,可以将这种常用方法通用化 function showid(idname){ var isIE = (document.all) ? true : false; ...
- springboot学习(九) 使用mybatis访问数据库
1.添加maven依赖 <dependency> <groupId>org.mybatis.spring.boot</groupId> <artifactId ...
- DNS的概念,用途,DNS查询的实现算法
1.DNS的概念,用途 DNS是由解析器以及域名服务器组成的. 域名服务器是指保存有该网络中所有主机的域名和对应IP地址,并具有将域名转换为IP地址功能的服务器. DNS ...
- IIS如何添加m3u8流媒体类型
m3u8,mime类型填写: application/x-mpegURL. ts ,mime类型填写: video/MP2T
- atitit.MIZIAN 陕北方言 特有词汇 大词典 attilax 整理 a--g v1 q31.xlsx
atitit.MIZIAN 陕北方言 特有词汇 大词典 attilax 整理 a--g v1 q31.xlsx 1 Mizian陕北方言 english英语 spain西班牙语 cantonese粤 ...
- Python内置函数之input()
input([prompt])input()读取标准输入并打印字符串到屏幕. 参数是自定义的提示符. 例子: >>> input('$ ') $ pwd 'pwd'
- URL浅谈
URL中的锚 URL中的锚就是#,语法: #foo 其中定位锚的方式有2种,id和name属性都可以定位锚. 例子: <div name='top'>top</div>或者&l ...
- 工业控制系统PLC、DCS、ESD
PLC:可编程逻辑控制系统.PLC是一种专为在工业环境应用而设计的数字运算电子系统. DCS:集散控制系统. ESD:紧急停车系统.
- 2017-5-14 湘潭市赛 Similar Subsequence 分析+四维dp+一些简单优化
Similar Subsequence Accepted : Submit : Time Limit : MS Memory Limit : KB Similar Subsequence For gi ...
- x264命令行工具(x264.exe)源码整体分析
该命令行工具调用的是libx264,就是一个使用该库的示例程序 X264命令行工具的源代码在x264中的位置如下图所示(红框里面的). X264命令行工具的源代码的调用关系如下图所示. Additio ...