Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7: 

1) 1+1+1+1+1+1+1
2) 1+1+1+1+1+2
3) 1+1+1+2+2
4) 1+1+1+4
5) 1+2+2+2
6) 1+2+4 Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
Input
A single line with a single integer, N.
Output
The number of ways to represent N as the indicated sum. Due to the potential huge size of this number, print only last 9 digits (in base 10 representation).
Sample Input
7
Sample Output
6

对不起,是我太菜了,看到题目又没思路,接着参考大佬的博客

首先定义状态:d[i] 表示i的划分方法数

关键是这里的递推关系也就是状态转移方程:

1.所求的n为奇数,那么所求的分解结果中必含有1,因此,直接将i-1的分拆结果中添加一个1即d[i] = d[i-1]

2.所求的n为偶数,那么n的分解结果分两种情况

  • 如果含有有1,至少有两个,则d[i-2]的每一种情况加两个1,就得到i
  • 不含有1 那么,分解因子的都是偶数,将每个分解的因子都除以2, 刚好是i/2的分解结果,并且可以与之一一对应,即d[i/2]

综上:d[i] = d[i-1] (i为奇数)

   d[i] = d[i-2] + d[i/2]  (i为偶数)

最后由于只要输出最后9个数位,别忘记模1000000000

附上AC代码:

#include<iostream>
using namespace std;
int d[1000005];
int main()
{
int i,n;
d[1]=1;
d[2]=2;
for(i=3;i<=1000000;i++) {
if(i&1)
d[i]=d[i-1];
else
d[i]=(d[i-2]+d[i/2])%1000000000;
}
cin>>n;
cout<<d[n]<<endl; return 0;
}

附:

i&1用于判断是否为奇数数!如果为真,则为奇数,为假则为偶数
解释:&符号代表 按位与,1的二进制最后一位为1,其余为零。如果一个数为奇数,那么最后一位必为1,其余位必为0,所以得出结果为1。如果是偶数的话,最后一位必然为0,其余位与0与运算必为0,所以结果为0,这样就可以起到判断奇数偶数的效果

POJ-2229 Sumsets(基础dp)的更多相关文章

  1. poj -2229 Sumsets (dp)

    http://poj.org/problem?id=2229 题意很简单就是给你一个数n,然后选2的整数幂之和去组成这个数.问你不同方案数之和是多少? n很大,所以输出后9位即可. dp[i] 表示组 ...

  2. poj 2229 Sumsets(dp)

    Sumsets Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 400000/200000K (Java/Other) Total Sub ...

  3. poj 2229 Sumsets(dp 或 数学)

    Description Farmer John commanded his cows to search . Here are the possible sets of numbers that su ...

  4. POJ 2229 Sumsets【DP】

    题意:把n拆分为2的幂相加的形式,问有多少种拆分方法. 分析:dp,任何dp一定要注意各个状态来源不能有重复情况.根据奇偶分两种情况,如果n是奇数则与n-1的情况相同.如果n是偶数则还可以分为两种情况 ...

  5. poj 2229 Sumsets(记录结果再利用的DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题意: 将一个数N分解为2的幂之和共有几种分法? 题解: 定义dp[ i ]为数 i 的 ...

  6. poj 2229 Sumsets DP

    题意:给定一个整数N (1<= N <= 1000000),求出以 N为和 的式子有多少个,式子中的加数只能有2的幂次方组成 如5 : 1+1+1+1+1.1+1+1+2.1+2+2.1+ ...

  7. POJ 2229 Sumsets

    Sumsets Time Limit: 2000MS   Memory Limit: 200000K Total Submissions: 11892   Accepted: 4782 Descrip ...

  8. poj 2229 Sumsets 完全背包求方案总数

    Sumsets Description Farmer John commanded his cows to search for different sets of numbers that sum ...

  9. POJ 2229 Sumsets(技巧题, 背包变形)

    discuss 看到有人讲完全背包可以过, 假如我自己做的话, 也只能想到完全背包了 思路: 1. 当 n 为奇数时, f[n] = f[n-1], 因为只需在所有的序列前添加一个 1 即可, 所有的 ...

  10. POJ 2229 Sumsets(递推,找规律)

    构造,递推,因为划分是合并的逆过程,考虑怎么合并. 先把N展开成全部为N个1然后合并,因为和顺序无关,所以只和出现次数有关情况有点多并且为了避免重复,分类,C[i]表示序列中最大的数为2^i时的方案数 ...

随机推荐

  1. oeasy教您玩转vim - 48 - # ed由来

    ​ 范围控制 回忆上节课内容 我们这次研究了mark的定义和使用 mb定义 'b跳转 可以对marks,查询删除 三种marks 小写 本文件内 大写 跨文件 数字 配置文件中 甚至可以在行编辑中,使 ...

  2. useHeadSafe:安全生成HTML头部元素

    title: useHeadSafe:安全生成HTML头部元素 date: 2024/7/17 updated: 2024/7/17 author: cmdragon excerpt: 摘要:&quo ...

  3. AT_abc182_d 题解

    洛谷链接&Atcoder 链接 本篇题解为此题较简单做法及较少码量,并且码风优良,请放心阅读. 题目简述 从数轴的原点开始向正方向走. 第一次向前走 \(a_1\) 步,第二次向前走 \(a_ ...

  4. 在Python中使用SWCNN去除水印

    在Python中使用SWCNN去除水印 说明 首次发表日期:2024-07-17 SWCNN Github官方仓库: https://github.com/hellloxiaotian/SWCNN S ...

  5. 如何让 MGR 不从 Primary 节点克隆数据?

    问题 MGR 中,新节点在加入时,为了与组内其它节点的数据保持一致,它会首先经历一个分布式恢复阶段.在这个阶段,新节点会随机选择组内一个节点(Donor)来同步差异数据. 在 MySQL 8.0.17 ...

  6. PHP转Go系列 | 推荐一个强大的Go语言工具函数库

    大家好,我是码农先森. 从 PHP 转到 Go 的朋友,常常会因为没有便捷的工具函数而感到苦恼.PHP 写的多了就会形成路径依赖,在写 Go 的时候时不时就会想到 PHP 强大的数组函数.当然写 Go ...

  7. tcp udp测试

    tcp udp测试 sub_udp.py #!/usr/bin/env python # -*- coding: utf-8 -*- # 可以正常接收udp import socket import ...

  8. 老旧 Linux 系统搭建现代 C++ 开发环境 —— 基于 neovim

    问题背景 公司配发的电脑是 macOS,日常开发需要访问 Linux 虚拟机,出于安全方面的考虑,只能通过跳板机登录.这阻止了大多数远程图形界面的使用,让写代码的工作变得复杂起来,市面上非常好用的 V ...

  9. 【摘录】人形机器人和自动驾驶技术 —— 3D机器视觉技术

    以下内容引自: https://www.eda365.com/forum.php?mod=viewthread&tid=744288 3D机器视觉技术分为两个部分,即3D重构技术和3D数据分析 ...

  10. 如何拉取指定CPU架构的并且指定ubuntu版本的docker镜像

    拉取不同CPU架构下ubuntu22.04镜像: aarch64 (arm v8) CPU架构: docker pull --platform=linux/aarch64 ubuntu:22.04 x ...