前言

因为本人天资愚钝,所以总喜欢将抽象化的事务具象化表达。对于各类眼花缭乱的树,只需要认知到它们只是一种数据结构,类似数组,切片,列表,映射等这些耳熟能详的词汇。对于一个数据结构而言,无非就是增删改查而已,既然各类树也是数据结构,它们就不能逃离增删改查的桎梏。

那么,为什么我们需要树这种数据结构呢,直接用数组不行吗,用切片不行吗?当然可以,只不过现实世界是缤纷杂乱的,而又没有一种万能药式的数据结构以应对千变万化的业务需求。所以,才会有各类树,而且一些“高级”数据结构是基于树形数据结构的,例如映射。

二叉树

在中文语境中,节点结点傻傻分不清楚,故后文以 node 代表 "结点",root node 代表根节点,child node 代表 “子节点”

二叉树是诸多树状结构的始祖,至于为什么不是三叉树,四叉树,或许是因为计算机只能数到二吧,哈哈,开个玩笑。二叉树很简单,每个 node 最多存在两个 child node,第一个节点称之为 root node。

二叉树具备着一些基本的数学性质,不过很简单,定义从 i 从 0 开始:

  • i 层至多有 2i 个 node;
  • 深度为 i 层二叉树至多有 2i+1-1 个 node。

二叉树的特殊类型

这里有兴趣的可以了解一下,不影响后文的阅读。二叉树根据 child node 的不同,衍生出了几种特殊类型:在一颗二叉树中,如果每个 node 都有 0 或 2 个 child node,则二叉树是满二叉树;定义从 i 从 0 开始,一棵深度为 i,且仅有 2i+1−1 个 node 的二叉树,称为完美二叉树;若除最后一层外的其余层都是满的,并且最后一层要么是满的,要么在右边缺少连续若干 node,则此二叉树为完全二叉树

二叉搜索树

二叉搜索树(Binary Search Tree),也叫二叉查找树,有序二叉树,排序二叉树(名字还挺多)。它是一种常用且特殊的二叉树,它具备一个特有的性质,left node(左结点)始终小于 parent node (父结点),right node 始终大于 parent node。

二叉搜索树的查找

  1. 二叉搜索树从 root node 开始,如果命中则返回;
  2. 否则,目标值比 node 小进入 left node;
  3. 比 node 大进入 right node;
  4. 如果左右都为空,则未命中。

二叉搜索树的遍历

二叉搜索树有不同的遍历方式,这里介绍常用的中序遍历方式:

  1. 先遍历左子树;
  2. 然后查找当前左子树的 parent node;
  3. 遍历右子树。

二叉搜索树的插入

  1. 二叉搜索树从 root node 开始,如果命中则不进行操作;
  2. 否则,目标值比 node 小进入 left node;
  3. 比 node 大进入 right node;
  4. 最终将值插入搜索停止的地方。

二叉搜索树的删除

二叉树的删除和查询基本一致,只要在命中时删除即可。

  1. 二叉搜索树从 root node 开始,如果命中则删除;
  2. 否则,目标值比 node 小进入 left node;
  3. 比 node 大进入 right node;
  4. 删除后使用该 node 左子树最大值或者右子树最小值替代该 node。

自平衡二叉树

从上面的几张动图中我们知晓,二叉搜索树不同于线性结构,它可以大大降低查找,插入的时间复杂度。但在特殊情况下,二叉搜索树可能退化为线性结构,假如我们依次插入1,2,3,4,5:

此时,二叉搜索树退化为线性结构,效率重新变回遍历。于是,便出现了自平衡二叉树,例如 AVL 树,红黑树,替罪羊树等。但它们并不是本文重点,下面我要介绍的是另外一种很常见的自平衡二叉树:B树。

B树

B树和B-树是同一个概念。B树相对于二叉树有两点最大的不同:

  • 每个 node 可以有不止一个数值
  • 每个 node 也可以有不止两个 child node

B树有两种类型 node:

  • internal node(内部结点):不仅仅存储数据,也具备 child node;
  • leaf node(叶子结点):仅存储数据,不具备 child node。

这两种 node 不同于前文所提的 root node 和 child node。root 和 child 是相对于阶层的概念,而 internal 和 leaf 是相对于性质的概念

一个简单的图例如下:

图中的蓝色方块是 internal node,绿色则是 leaf node。

B树有一些需要满足的性质,这里的抽象的逻辑有些烧脑,我会对照前面的图片来解释。设定一颗 m 阶的B树,m = 3

设 internal node 的 child node 个数为 k

  1. 如果 internal node 是 root node,那么 k = [2, m],比如上图的 8 有两个 child node(3|6, 10/12);
  2. 如果 internal node 不是 root node,那么 k = [m/2, m],m/2 向上取整,比如上图的 3|6 有三个 child node;
  3. 如果 root node 的 k 为 0,那么 root node 是 leaf 类型的;
  4. 所有 leaf node 在同一层,上图最后一行的六个 node。

设任意 node 键值个数为 n

  1. 对于 internal node, n = k-1, 升序排序,满足 k[i] < k[i+1],比如上图的三个 internal(8,3|6,10|12) 都满足此规律;
  2. 对于 leaf node,n = [0, m-1],同样升序排序,比如上图最后一个的六个 leaf,其键值最多为两个。

上述的概念有些抽象,但是这是理解B树关键的地方所在,后面在B树的插入讲解,会有更多具象的动图来解释这些概念。

B树的查找

B树的查找类似于二叉树:

  1. 从 root node 开始,如果目标值小于 root node,进入左子树,否则进入右子树;
  2. 遍历 child node 的多个键值;
  3. 如果匹配到键值,则返回;
  4. 如果不匹配,则根据目标值的范围选择对应的子树;
  5. 重复步骤2、3、4,直到匹配成功返回或者未找到。

假如我们要查找 11:

B树的遍历

B树的遍历方式类似二叉搜索树,不过因为B树一个 node 有多个键值和多个 child node,所以需要遍历每个左右子树和键值:

  1. 先遍历第一个左子树,也就是 parent node 第一个键值的左边;
  2. 然后查找当前 parent node 的第一个键值;
  3. 遍历第二个左子树,也就是 parent node 第二个键值的左边;
  4. 遍历完搜索的左子树,最后遍历当前 parent 的最右子树,即最后一个键值的右边。

B树的插入

插入前面的过程和查询一致,在插入后可能需要重整 node,以符合B树的性质,例如插入 16:

  1. 先查找到目标 node,也就是 13|15
  2. 因为这是一颗 3 阶B树,所以 node 最多只能有两个键值,于是向上传递中间值 15;
  3. parent node 最多也只能有两个键值,于是继续向上传递中间值 12;
  4. 此时 root node 是 8|12,需要有三个 child node,于是 10|15 需要拆分,再向下进一步调整,至此,插入 16 完成。

B树的删除

删除是插入的逆操作,但是往往比插入更复杂,因为删除后经常需要重整 node:

  1. 先查找到目标 node,也就是 16
  2. 删除 16,此时 15 child node 剩下一个,不符合条件,递归向上调整,一直到根节点;
  3. 直到所有的条件都满足后,删除 16 完成。

咬文嚼图式的介绍二叉树、B树/B-树的更多相关文章

  1. 四种生成和解析XML文档的方法介绍

    解析XML的方法越来越多,但主流的方法也就四种,即:DOM.SAX.JDOM和DOM4J 1.DOM(Document Object Model) DOM是用与平台和语言无关的方式表示XML文档的官方 ...

  2. Atitit 常见的树形结构 红黑树  二叉树   B树 B+树  Trie树 attilax理解与总结

    Atitit 常见的树形结构 红黑树  二叉树   B树 B+树  Trie树 attilax理解与总结 1.1. 树形结构-- 一对多的关系1 1.2. 树的相关术语: 1 1.3. 常见的树形结构 ...

  3. AC自动机——1 Trie树(字典树)介绍

    AC自动机——1 Trie树(字典树)介绍 2013年10月15日 23:56:45 阅读数:2375 之前,我们介绍了Kmp算法,其实,他就是一种单模式匹配.当要检查一篇文章中是否有某些敏感词,这其 ...

  4. 数据结构(一)二叉树 & avl树 & 红黑树 & B-树 & B+树 & B*树 & R树

    参考文档: avl树:http://lib.csdn.net/article/datastructure/9204 avl树:http://blog.csdn.net/javazejian/artic ...

  5. 剑指offer38:输入一棵二叉树,求该树的深度

    1 题目描述 输入一棵二叉树,求该树的深度.从根结点到叶结点依次经过的结点(含根.叶结点)形成树的一条路径,最长路径的长度为树的深度. 2 思路和方法 深度优先搜索,每次得到左右子树当前最大路径,选择 ...

  6. 数据结构(三) 树和二叉树,以及Huffman树

    三.树和二叉树 1.树 2.二叉树 3.遍历二叉树和线索二叉树 4.赫夫曼树及应用 树和二叉树 树状结构是一种常用的非线性结构,元素之间有分支和层次关系,除了树根元素无前驱外,其它元素都有唯一前驱. ...

  7. 树(二叉树 & 二叉搜索树 & 哈夫曼树 & 字典树)

    树:n(n>=0)个节点的有限集.有且只有一个root,子树的个数没有限制但互不相交.结点拥有的子树个数就是该结点的度(Degree).度为0的是叶结点,除根结点和叶结点,其他的是内部结点.结点 ...

  8. Sandcastle帮助文档生成器使用介绍

    一.软件介绍       Sandcastle是一个管理类库的文档编译器,是用于编译发布组件(Assembly)信息的一个工具,这个工具通过反射和Xslt技术,可以从dll文件及其xml注释(命令行编 ...

  9. IE11新文档模式Edge介绍与评估,及在WebBrowser应用中的使用。

    浏览器模式与文档模式概念是怎么来的? 1.浏览器模式与文档模式概念起源 为了解决兼容性的问题,在IE浏览器(IE8, IE9, IE10)中,引入了浏览器模式和文档模式两个概念,浏览网页时可以通过按F ...

  10. 一文带你详细介绍c++中的std::move函数

    前言 在探讨c++11中的Move函数前,先介绍两个概念(左值和右值) 左值和右值 首先区分左值和右值 左值是表达式结束后依然存在的持久对象(代表一个在内存中占有确定位置的对象) 右值是表达式结束时不 ...

随机推荐

  1. 干货 springcloud之 poenFeign的使用

    PoenFeign集成到springcloud项目中 先创建一个springboot项目 这里就不多说了 application.yml文件: server: port: 8082spring: ap ...

  2. vue2.0,把vform666、workFlow开源组件集成到vue-admin-template框架上心得体会

    以上三个都是vue2版本的开源项目,有的已经有vue3版本了,我把他们集成到一起,是出于练习的目的,也是消磨时间. vue-admin-template是一个很基础简洁的后台管理系统框架:vform6 ...

  3. python之Faker库如果构造用户信息测试数据

    代码链接1:https://blog.csdn.net/qq_38484679/article/details/115244711 补充代码链接0:https://blog.csdn.net/weix ...

  4. mit 6.824 lab1 思路贴

    前言 为遵守 mit 的约定,这个帖子不贴太多具体的代码,主要聊聊自己在码代码时的一些想法和遇到的问题. 这个实验需要我们去实现一个 map-reduce 的功能.实质上,这个实验分为两个大的板块,m ...

  5. es 排序突然很慢的原因

    今天突然之间发现一个访问es的查询很慢.由刚上线之前测试的100ms直接到了5s左右.瞬间懵逼. 这个用户索引大概200w的数据. 查询语句如下 GET /user/_search{"fro ...

  6. WPF插件之 - PropertyChanged.Fody使用详解

    总目录文章目录总目录一.PropertyChanged.Fody是什么?二.PropertyChanged.Fody的安装三.PropertyChanged.Fody的功能1. 特性1 实现属性通知的 ...

  7. 从数据库设计到性能调优,全面掌握openGemini应用开发最佳实践

    本文分享自华为云社区<DTSE Tech Talk × openGemini :从数据库设计到性能调优,全面掌握openGemini应用开发最佳实践>,作者:华为云开源. 在本期<从 ...

  8. bash: _get_comp_words_by_ref: command not found 报错

    没有安装补全的包 错误信息 bash: _get_comp_words_by_ref: command not found 表明你的 shell 中可能存在补全功能的问题. 通常,这种错误发生在你的系 ...

  9. C#.NET 国密SM4加密解密 CBC ECB 2种模式

    注意点: 1.加密时,明文转 byte[] 时,不要用 Encoding.Default,一定要指定编码,如:UTF-8. 解密时,解出的 byte[] 转 string 同样要指定相同的编码. 2. ...

  10. 关于编译告警 C4819 的完整解决方案 - The file contains a character that cannot be represented in the current code page (number). Save the file in Unicode format to prevent data loss.

    引言 今天迁移开发环境的时候遇到一个问题,同样的操作系统和 Visual Studio 版本,原始开发环境一切正常,但是迁移后 VS 出现了 C4819 告警,上网查了中文的一些博客,大部分涵盖几种解 ...