两种方法将CNN转化成为SNN:

  • 直接训练一个类似CNN架构的SNN「虽然有类似于STDP等无监督方法,但是处于起步状态」
  • 训练初始的CNN,将训练得到的权重直接应用于类似于CNN架构的SNN「将CNN转化为SNN的时候,训练的准确性可能无法保证」

准确性损失的原因:

  • CNN中的负值在SNN中无法准确表示,原因是:a.sigmoid函数tanh()的输出值介于-1.0和1.0之间;b.在每个卷积层中,每个输出特征映射的值都是输入加上偏差的加权和,权重和偏差都可能为负,导致输出值为负;c.预处理的输出值(例如颜色变换和空间标准化)可能会产生负值。「虽然抑制性神经元可以表示负值,但是需要增加很多的神经元,会增加计算成本。」
  • 不同于CNN,SNN不能表示误差。每个卷积层中的误差可能是正的也可能是负的,在SNN中不能表示。
  • 最大池化需要两层SNN。在CNN中,空间最大池化被限制在输入中一个小的图像邻域上获取最大输出值,在SNN中需要两层神经网络,第一层用来侧向抑制,第二层用来在小图像区域上进行聚集,这种方法需要更多的神经元,并且可能损失复杂性。

改进:

  • 使所有层的输出值变为正值。a.在预处理后面加一个abs()函数,使得所有的值变为正值;b.将sigmoid函数从tanh()改成HalfRect(x),定义为\(HalfRect(x)=max(x,0)\),有很多优点,比如在训练的时候收敛的快,而且在\(x>0\)的时候是线性的,将转化的误差降到了最低。
  • 消除所有卷积层和全联接层的误差。在每次训练迭代后将所有的误差值置0。
  • 不用空间最大池化,而用空间线性子采样。空间线性子采样采用一个单一形式的权重核,将所有像素添加到一个小图像邻域上。空间线性子采样函数可以很容易地转换为脉冲域。

采用上述三条改进,可以将CNN转化为定制CNN。

integrate-and-fire neuron model模型进行更新:

\(V(t)=V(t-1)+L+X(t)\)

\(如果V(t)\geq \theta,脉冲和复位V(t)=0\)

\(如果V(t)<V_{min},复位后V(t)=V_{min}\)

\(L\)是常数,为泄漏参数;\(X(t)\)是连接的神经元的所有突触在时间\(t\)的总输入。当神经元电压\(V(t)\)超过阈值\(\theta\)的时候,神经元会激发一个脉冲,并且其膜电位\(V(t)\)置0。膜电位不能低于静止状态\(V_{min}\)。

第\(i\)层的神经元\((i,j)\)可以定义为:

\(X_{i,j}(t)=\displaystyle\sum_{p,q=-3}^3A_{p+i,q+j}(t)K_{pq}\)

其中\(A_{p+i,q+j}\)是来自前一层的输入脉冲(0或者1),\(K_{pq}\)是大小为7$\times$7的卷积核权重,由同一映射中的神经元共享。

ANN2SNN不仅局限于使用integrate-and-fire neuronmodel模型,还可以使用其他模型进行训练。

脉冲生成层的定义:\(I_{ijk}\)是输入到脉冲生成层的图像匹配。在时间\(t\)内,如果满足\(rand()<cI_{ijk}\),第\(k\)层图像匹配的神经元\((i,j)\)发射一个脉冲。其中,\(rand()\)是\((0.0,1.0)\)之间的随机数生成器,\(c\)是一个常数,用来缩放生成脉冲的频率。

实验结果

Neovision2 Tower Dataset:

CIFAR-10 Dataset:

硬件:

\(Total\ energy=(5\times 10^5+2\times 10^7)]\alpha\\\cong2\times 10^7\alpha\ Joules/chip\)

\(P=2\times 10^7\alpha Joules/chip\times 30frame/s\times 5chips/ram=3\times 10^9\alpha Joules/s=3\times 10^9\alpha Watts\)







SNN_文献阅读_Spiking Deep Convolutional Neural Networks for Energy-Efficient Object Recognition的更多相关文章

  1. ImageNet Classification with Deep Convolutional Neural Networks(译文)转载

    ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geo ...

  2. AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...

  3. Understanding the Effective Receptive Field in Deep Convolutional Neural Networks

    Understanding the Effective Receptive Field in Deep Convolutional Neural Networks 理解深度卷积神经网络中的有效感受野 ...

  4. 【文献阅读】Augmenting Supervised Neural Networks with Unsupervised Objectives-ICML-2016

    一.Abstract 从近期对unsupervised learning 的研究得到启发,在large-scale setting 上,本文把unsupervised learning 与superv ...

  5. Deep learning_CNN_Review:A Survey of the Recent Architectures of Deep Convolutional Neural Networks——2019

    CNN综述文章 的翻译 [2019 CVPR] A Survey of the Recent Architectures of Deep Convolutional Neural Networks 翻 ...

  6. 《ImageNet Classification with Deep Convolutional Neural Networks》 剖析

    <ImageNet Classification with Deep Convolutional Neural Networks> 剖析 CNN 领域的经典之作, 作者训练了一个面向数量为 ...

  7. Image Scaling using Deep Convolutional Neural Networks

    Image Scaling using Deep Convolutional Neural Networks This past summer I interned at Flipboard in P ...

  8. 中文版 ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 摘要 我们训练了一个大型深度卷积神经网络来将ImageNet LSVRC ...

  9. 深度卷积神经网络用于图像缩放Image Scaling using Deep Convolutional Neural Networks

    This past summer I interned at Flipboard in Palo Alto, California. I worked on machine learning base ...

  10. [论文阅读] ImageNet Classification with Deep Convolutional Neural Networks(传说中的AlexNet)

    这篇文章使用的AlexNet网络,在2012年的ImageNet(ILSVRC-2012)竞赛中获得第一名,top-5的测试误差为15.3%,相比于第二名26.2%的误差降低了不少. 本文的创新点: ...

随机推荐

  1. 如何编写难以维护的React代码?耦合组件

    如何编写难以维护的React代码?耦合组件 在许多项目中,我们经常会遇到一些难以维护的React代码.其中一种常见的情况是:子组件直接操作父组件方法,从而导致父子组件深度耦合.这样的实现让子组件过于依 ...

  2. Verilog实现奇分频电路

    在FPGA中,计数器电路用途很广,一般计数器电路都可作为分频电路.实现占空比为50的偶分频电路很好实现.但实现占空比为50的奇分频电路有点难度.下面给出一个简单例子,记录学习奇分频电路的过程. 实现占 ...

  3. Git SSH 认证配置

    [前言] 我们在开发过程中,经常会和github,gitlab或者gitee打交道,一般临时克隆(clone)其他人的项目学习参考时,我们大多采用 https 的方式进行 clone 但如果在参与多个 ...

  4. 关于自定义程序打包成jar包,并读取配置

    前言 在实际开发过程中,我们有时候有把你编写的一段程序打成jar包的需求,而一些配置是需要去配置文件里面读取关于这项目的一些配置,本人在网络上查询了众多的资料,总的来说可以归为3类 1.从数据库读取配 ...

  5. Kitex微服务开发实践(ETCD服务注册)

    服务注册通常用于分布式系统或微服务架构中,是一种用于管理和发现这些分布式服务的机制.它的目标是让服务能够动态地找到其他服务,并能够与其进行通信,而无需显式地配置其位置信息 本文简单讲述使用etcd进行 ...

  6. OpenCV实战:从图像处理到深度学习的全面指南

    本文深入浅出地探讨了OpenCV库在图像处理和深度学习中的应用.从基本概念和操作,到复杂的图像变换和深度学习模型的使用,文章以详尽的代码和解释,带领大家步入OpenCV的实战世界. 1. OpenCV ...

  7. 【Nacos篇】Nacos基本操作及配置

    官方文档:https://nacos.io/zh-cn/docs/v2/ecology/use-nacos-with-spring-cloud.html 前置条件:SpringCloud脚手架 单机模 ...

  8. 关于XXLJOB集群模式下调度失败的问题

    xxljob在集群模式下调度高频任务时,有时会出现调度失败的问题,具体报错如下: java.io.EOFException: HttpConnectionOverHTTP@6be8bf0c(l:/10 ...

  9. C++算法之旅、06 基础篇 | 第三章 图论

    常用代码模板3--搜索与图论 - AcWing DFS 尽可能往深处搜,遇到叶子节点(无路可走)回溯,恢复现场继续走 数据结构:stack 空间:需要记住路径上的点,\(O(h)\). BFS使用空间 ...

  10. padans 常用的统计方法

    #coding=utf-8import pandas as pdimport numpy as npfile="./IMDB-Movie-Data.csv"data=pd.read ...