技术背景

在前面的几篇博客中,我们分别介绍过Histogram算法的使用Plumed安装与简单使用。Plumed一般就是两种用法:要么在运行分子动力学模拟的过程中实时的对接,要么就是把分子模拟的相关轨迹保存下来,然后再使用Plumed进行后分析,本文介绍的是后面这种使用方法。

轨迹准备

做后分析,我们要先准备一手轨迹。比如我们做Histogram,那么就需要保留一条CV的轨迹,或者说反应坐标的轨迹。一般为了归一化的需求,我们可能还需要保留反应坐标所对应的单点能,或者称之为Bias偏置势。如下是一条轨迹的示例record_cv_bias.txt,含有100个点:

#! FIELDS time rbias dcomb
0 1.0 0.722307
1 1.0 0.929853
2 1.0 1.046353
3 1.0 0.849326
4 1.0 0.635665
5 1.0 1.133585
6 1.0 1.602735
7 1.0 1.11138
8 1.0 0.815045
9 1.0 0.744088
10 1.0 0.631533
11 1.0 1.006049
12 1.0 0.507855
13 1.0 0.620414
14 1.0 1.43557
15 1.0 0.798832
16 1.0 1.007135
17 1.0 0.684447
18 1.0 1.073844
19 1.0 0.952023
20 1.0 0.754293
21 1.0 0.530406
22 1.0 1.078594
23 1.0 1.325044
24 1.0 1.418314
25 1.0 1.110357
26 1.0 0.964378
27 1.0 0.893131
28 1.0 1.473515
29 1.0 1.103729
30 1.0 1.019812
31 1.0 1.037889
32 1.0 1.092906
33 1.0 0.602312
34 1.0 1.016394
35 1.0 0.845226
36 1.0 1.210281
37 1.0 0.744589
38 1.0 0.666467
39 1.0 1.276913
40 1.0 0.976801
41 1.0 0.92263
42 1.0 1.386575
43 1.0 1.243241
44 1.0 1.442755
45 1.0 1.284636
46 1.0 0.756184
47 1.0 1.162758
48 1.0 1.177665
49 1.0 0.717487
50 1.0 1.193379
51 1.0 0.798996
52 1.0 1.045093
53 1.0 1.489541
54 1.0 1.067574
55 1.0 1.10109
56 1.0 1.135074
57 1.0 1.049557
58 1.0 0.362635
59 1.0 1.030856
60 1.0 1.323538
61 1.0 1.405822
62 1.0 0.935292
63 1.0 0.868032
64 1.0 0.946401
65 1.0 1.468123
66 1.0 1.062565
67 1.0 1.05637
68 1.0 0.962974
69 1.0 1.50403
70 1.0 0.95933
71 1.0 1.218142
72 1.0 1.303102
73 1.0 0.876645
74 1.0 1.188313
75 1.0 1.31572
76 1.0 0.693456
77 1.0 0.54377
78 1.0 1.026873
79 1.0 1.3925
80 1.0 1.317733
81 1.0 0.972162
82 1.0 1.373311
83 1.0 1.244547
84 1.0 1.00565
85 1.0 1.180062
86 1.0 1.221193
87 1.0 1.046702
88 1.0 1.409161
89 1.0 1.132955
90 1.0 0.428334
91 1.0 0.890674
92 1.0 0.63586
93 1.0 0.997099
94 1.0 0.969676
95 1.0 1.280118
96 1.0 1.19793
97 1.0 1.112535
98 1.0 1.388056
99 1.0 0.946911

有了轨迹之后,写一个简单的Plumed配置文件plumed.dat

cv: READ FILE=record_cv_bias.txt VALUES=dcomb IGNORE_TIME
w: READ FILE=record_cv_bias.txt VALUES=rbias IGNORE_TIME
rw: REWEIGHT_BIAS ARG=w TEMP=300
hh: HISTOGRAM ...
ARG=cv
KERNEL=gaussian
GRID_MIN=0.3
GRID_MAX=1.65
GRID_BIN=50
BANDWIDTH=0.05
NORMALIZATION=true
LOGWEIGHTS=rw
...
DUMPGRID GRID=hh FILE=histo

这个文件的逐行释义为:

1. 读取record_cv_bias.txt文件中标签为dcomb的一列,作为cv
2. 读取record_cv_bias.txt文件中标签为rbias的一列,作为w
3. 使用w定义一个归一化的系数rw,对应的温度为300K
4~13. 定义Histogram参数,使用高斯核,区间最小值为0.3,区间最大值为1.65,区间内分50个格子,波包带宽为0.05,使用rw进行归一化
14. 将输出数据保存到名为histo的文件内

运行Plumed

安装好plumed以后,之间在对应文件的目录下运行:

$ plumed driver --plumed plumed.dat --noatoms
PLUMED: PLUMED is starting
PLUMED: Version: 2.7.1 (git: Unknown) compiled on Jul 12 2021 at 09:24:30
PLUMED: Please cite these papers when using PLUMED [1][2]
PLUMED: For further information see the PLUMED web page at http://www.plumed.org
PLUMED: Root: /usr/local/lib/plumed
PLUMED: For installed feature, see /usr/local/lib/plumed/src/config/config.txt
PLUMED: Molecular dynamics engine: driver
PLUMED: Precision of reals: 8
PLUMED: Running over 1 node
PLUMED: Number of threads: 1
PLUMED: Cache line size: 512
PLUMED: Number of atoms: 0
PLUMED: File suffix:
PLUMED: FILE: plumed.dat
PLUMED: Action READ
PLUMED: with label cv
PLUMED: with stride 1
PLUMED: reading data from file record_cv_bias.txt
PLUMED: reading value dcomb and storing as cv
PLUMED: Action READ
PLUMED: with label w
PLUMED: with stride 1
PLUMED: reading data from file record_cv_bias.txt
PLUMED: reading value rbias and storing as w
PLUMED: Action REWEIGHT_BIAS
PLUMED: with label rw
PLUMED: with arguments w
PLUMED: Action HISTOGRAM
PLUMED: with label hh
PLUMED: with stride 1
PLUMED: with arguments cv
PLUMED: reweighting using weights from rw
PLUMED: grid of 51 equally spaced points between (0.3) and (1.65)
PLUMED: Action DUMPGRID
PLUMED: with label @4
PLUMED: with stride 0
PLUMED: outputting grid calculated by action hh to file named histo with format %f
PLUMED: outputting data for replicas 0 END FILE: plumed.dat
PLUMED: Timestep: 1.000000
PLUMED: KbT has not been set by the MD engine
PLUMED: It should be set by hand where needed
PLUMED: Relevant bibliography:
PLUMED: [1] The PLUMED consortium, Nat. Methods 16, 670 (2019)
PLUMED: [2] Tribello, Bonomi, Branduardi, Camilloni, and Bussi, Comput. Phys. Commun. 185, 604 (2014)
PLUMED: Please read and cite where appropriate!
PLUMED: Finished setup
PLUMED: Cycles Total Average Minimum Maximum
PLUMED: 1 0.007538 0.007538 0.007538 0.007538
PLUMED: 1 Prepare dependencies 99 0.000267 0.000003 0.000002 0.000008
PLUMED: 2 Sharing data 99 0.000007 0.000000 0.000000 0.000000
PLUMED: 3 Waiting for data 99 0.000010 0.000000 0.000000 0.000000
PLUMED: 4 Calculating (forward loop) 99 0.001478 0.000015 0.000014 0.000057
PLUMED: 5 Applying (backward loop) 99 0.000130 0.000001 0.000001 0.000003
PLUMED: 6 Update 99 0.003019 0.000030 0.000014 0.000093

运行完成后,如果没有报错,会在当前目录下生成一个histo文件,内容为:

#! FIELDS cv hh dhh_cv
#! SET normalisation 146.331611
#! SET min_cv 0.3
#! SET max_cv 1.65
#! SET nbins_cv 50
#! SET periodic_cv false
0.300000 0.040185 1.087032
0.327000 0.073737 1.333674
0.354000 0.108112 1.138788
0.381000 0.132720 0.673529
0.408000 0.146143 0.387485
0.435000 0.158725 0.647624
0.462000 0.185775 1.399849
0.489000 0.233253 2.034814
0.516000 0.290241 2.109999
0.543000 0.347304 2.200385
0.570000 0.415370 2.931229
0.597000 0.504292 3.503145
0.624000 0.592054 2.763309
0.651000 0.645747 1.208607
0.678000 0.663637 0.297321
0.705000 0.670123 0.268624
0.732000 0.677724 0.233552
0.759000 0.679871 -0.077180
0.786000 0.677381 0.020735
0.813000 0.688778 0.956408
0.840000 0.733653 2.431984
0.867000 0.822586 4.209499
0.894000 0.963284 6.230239
0.921000 1.155414 7.841243
0.948000 1.373556 8.056159
0.975000 1.575612 6.691082
1.002000 1.725112 4.227284
1.029000 1.795526 0.856452
1.056000 1.767797 -2.871105
1.083000 1.648824 -5.650900
1.110000 1.480563 -6.442901
1.137000 1.318483 -5.309715
1.164000 1.198476 -3.600376
1.191000 1.115220 -2.744803
1.218000 1.043134 -2.600741
1.245000 0.977289 -2.155749
1.272000 0.928752 -1.443136
1.299000 0.894999 -1.109955
1.326000 0.868484 -0.743408
1.353000 0.859332 0.120417
1.380000 0.869809 0.444883
1.407000 0.867177 -0.906627
1.434000 0.811246 -3.257711
1.461000 0.694147 -5.274589
1.488000 0.536089 -6.215685
1.515000 0.370839 -5.747150
1.542000 0.236681 -4.040289
1.569000 0.154469 -2.128090
1.596000 0.112702 -1.142470
1.623000 0.083908 -1.071380
1.650000 0.053970 -1.101246

这个结果的三列数据分别为:cv值、密度值和标准差,对于我们而言,主要关注下前两列的结果即可,可以写一个Python脚本做一下简单的可视化:

import numpy as np
with open('histo', 'r') as hfile:
hlines = hfile.readlines()
hcv = []
hbar = []
for hline in hlines[6:]:
hcv.append(float(hline.strip().split()[0]))
hbar.append(float(hline.strip().split()[1]))
hcv = np.array(hcv)
hbar = np.array(hbar)
from matplotlib import pyplot as plt
plt.figure()
plt.plot(hcv, hbar, color='black')
plt.show()

输出结果为:

总结概要

Plumed是一个强大的分子模拟数据处理工具,可以在模拟的过程中逐步分析,也可以保存模拟的轨迹做后分析。本文紧接前面的“增强采样软件PLUMED的安装与使用”文章,还有“直方图与核密度估计”文章。介绍了如何使用Plumed后分析工具,对输出的反应坐标的轨迹进行核密度估计。

版权声明

本文首发链接为:https://www.cnblogs.com/dechinphy/p/plumed-post.html

作者ID:DechinPhy

更多原著文章:https://www.cnblogs.com/dechinphy/

请博主喝咖啡:https://www.cnblogs.com/dechinphy/gallery/image/379634.html

Plumed分子模拟后分析的更多相关文章

  1. 团队作业10--事后分析(Beta版本)

    设想和目标 1. 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 我们的软件的作用是帮助用户实现准确快速的电子文档查重,我们对软件的定义是电子文档查重系统,即通过文 ...

  2. (Beta)Let's-M2后分析报告

    设想和目标 1. 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 在M1阶段我们对用户需求进行了调研,同时M1阶段我们的开发目标就是为了解决用户发起.参与.查看.搜 ...

  3. (Alpha)Let's-M1后分析报告

    Chronos团队Let's项目 Postmortem结果 设想和目标 1. 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 在最初的用户需求和市场调研方面,团队进 ...

  4. Eclipse被卡死了或者失去响应了后分析根源的一个小技巧

    提升程序员工作效率的工具/技巧推荐系列 推荐一个功能强大的文件搜索工具SearchMyFiles 介绍一个好用的免费流程图和UML绘制软件-Diagram Designer 介绍Windows任务管理 ...

  5. linux从head.s到start_kernelstart_kernel之---内核重定位后分析

    参考: https://biscuitos.github.io/blog/ARM-BOOT/ zImage 重定位之后实践 zImage 重定位之后,ARM 将 pc 指针指向了重定位 zImage ...

  6. Android事件分发机制浅谈(三)--源码分析(View篇)

    写事件分发源码分析的时候很纠结,网上的许多博文都是先分析的View,后分析ViewGroup.因为我一开始理解的时候是按我的流程图往下走的,感觉方向很对,单是具体分析的时候总是磕磕绊绊的,老要跳到Vi ...

  7. Virus.Win32.Virlock.b分析

    0x00 样本说明 分析样本是被0b500d25f645c0b25532c1e3c9741667的样本感染得到.感染前的文件是Tcpview.exe,一款windows网络连接查看工具. 感染前后文件 ...

  8. 高性能Linux服务器 第10章 基于Linux服务器的性能分析与优化

    高性能Linux服务器 第10章    基于Linux服务器的性能分析与优化 作为一名Linux系统管理员,最主要的工作是优化系统配置,使应用在系统上以最优的状态运行.但硬件问题.软件问题.网络环境等 ...

  9. Cppcheck代码分析(1)

    一.检查点 1.自动变量检查: 返回自动变量(局部变量)指针 2.越界检查: 数组越界返回自动变量(局部变量)指针 3.类检查: 构造函数初始化 4.内存泄露检查: 5.空指针检查: 6.废弃函数检查 ...

  10. Java 生产者消费者模式详细分析

    */ .hljs { display: block; overflow-x: auto; padding: 0.5em; color: #333; background: #f8f8f8; } .hl ...

随机推荐

  1. 超越极限!80Gbps高速传输,让您的数据瞬间飞速传递

    大文件传输是很多企业面临的挑战之一.基于传统的文件传输方法,由于许多原因,例如网络拥塞.数据包丢失.传播延迟等,导致文件的传输速度较慢.不稳定或不安全.尤其是对于像科研机构.金融公司和媒体制作公司等需 ...

  2. window.location.href和this.$router.push区别

    使用location.href='/url'来跳转,简单方便,但是刷新了页面:使用history.pushState('/url'),无刷新页面,静态跳转: 引进router,然后使用router.p ...

  3. KingbaseESV8R6识别IO使用率过高

    前言 数据库正常运行离不开I/O的使用,在操作系统上,I/O又离不开存储的性能及使用方式,我们可以在存储层利用raid条带化技术使IOPS达到最佳性能. 本篇文章有助于确认数据库I/O使用率过高的原因 ...

  4. ArrayList,LinkedList,Vector三者的区别

    List 中元素是有序的,元素可以重复,因为该集合体有索引 ArrayList: 底层数据结构是数组,查询快,增删慢. 线程不安全,效率高. 当元素放满了后,默认以原长度的 50%+1 的长度加长集合 ...

  5. #K-D Tree#洛谷 4357 [CQOI2016]K 远点对

    题目 已知平面内 \(n\) 个点的坐标,求欧氏距离下的第 \(k\) 远点对. 分析 先将\(k\)乘2转换为第\(k\)远有序点对. 由于\(O(n^2)\)即枚举一个点再枚举另一个点会超出时限, ...

  6. #背包#AT2037 [ARC060A] 高橋君とカード / Tak and Cards

    题目 有一个长度为\(n\)的数组\(a\),选择若干个数使它们的平均数为\(A\),问共有多少种方案 分析 设\(dp[i][j]\)表示选择\(i\)个数总和为\(j\)的方案数,那么答案就是\( ...

  7. OpenHarmony社区运营报告(2022年9月)

    篇首语 在开放原子开源基金会.OpenAtom OpenHarmony(简称"OpenHarmony")工作委员会.会员及共建单位和开发者的共同努力下,OpenHarmony在技术 ...

  8. C# 继承、多态性、抽象和接口详解:从入门到精通

    C# 继承 在 C# 中,可以将字段和方法从一个类继承到另一个类.我们将"继承概念"分为两类: 派生类(子类) - 从另一个类继承的类 基类(父类) - 被继承的类 要从一个类继承 ...

  9. Java 容器详解:使用与案例

    Java容器是一套工具,用于存储数据和对象.可以与C++的STL类比.Java容器也称为Java Collection Framework (JCF).除了存储对象的容器之外,还提供了一套工具类,用于 ...

  10. mysql统计查询和索引练习

    课程数据表course SET NAMES utf8mb4; SET FOREIGN_KEY_CHECKS = 0; -- ---------------------------- -- Table ...