鸿蒙轻内核源码分析:MMU协处理器
摘要:本系列首先了解下ARM CP15协处理器的知识,接着介绍下协处理器相关的汇编指令,最后分析下MMU相关汇编代码。
本文分享自华为云社区《鸿蒙轻内核A核源码分析系列六 MMU协处理器》,作者:zhushy。
1、 ARM C15 协处理器
在ARM嵌入式应用系统中, 很多系统控制由ARM CP15协处理器来完成的。CP15协处理器包含编号0-15的16个32位的寄存器。例如,ARM处理器使用C15协处理器的寄存器来控制cache、TCM(Tightly-Coupled Memory)和存储器管理。CP15的各个寄存器的概要信息如下图,图片来自官方资料《ARM Cortex-A Series Version: 4.0 Programmer’s Guide》。
在这些C15寄存器中和MMU关系较大的有C2、C7、C17寄存器,这些寄存器的作用,从上图可以看出,分别是:
- CP15 C2寄存器
Memory protection and control registers,内存保护和控制寄存器,包含Translation Table Base Register 0 (TTBR0)、Translation Table Base Register 1 (TTBR1)和Translation Table Base Control Register (TTBCR)。TTBR0、TTBR1是L1转换页表的基地址,TTCR控制TTBR0和TTBR1的使用。
- CP15 C7寄存器
Cache and branch predictor maintenance functions、Data and instruction barrier operations用于高速缓存和写缓存控制。
- CP15 C13寄存器
Context ID Register (CONTEXTIDR)、Software thread ID registers用于保存进程标识符(asid地址空间编号)。
2、ARM C15 协处理器汇编指令
访问CP15寄存器的指令主要是MCR和MRC这两个指令。本小节详细介绍下这2个汇编指令。先看下指令的含义,MCR是ARM处理器寄存器到协处理器寄存器的数据传送指令,英文为Move CPU register to coprocessor register,MRC是协处理器寄存器到ARM处理器寄存器的数据传送指令,英文为Move from coprocessor register to CPU register。这2个指令的语义格式如下,可以看出语义格式是一样的,但是读取写入含义会有差异。MCR是读取Rt寄存器写入协处理器寄存器CRn、CRm,而MRC是读取协处理器寄存器CRn、CRm写入Rt寄存器。
MCR{cond} coproc, #opcode1, Rt, CRn, CRm{, #opcode2}
MRC{cond} coproc, #opcode1, Rt, CRn, CRm{, #opcode2}
MCR详细的语义介绍如下:
Syntax
MCR{cond} coproc, #opcode1, Rt, CRn, CRm{, #opcode2} where:
cond
is an optional condition code. 可选的条件码。
coproc
is the name of the coprocessor the instruction is for. The standard name is pn, where n is an integer in the range 0 to 15.协处理器的名称,标准名称为pn,其中n为0-15,例如p14、p15。
opcode1
is a 3-bit coprocessor-specific opcode. 3位的操作码。
opcode2
is an optional 3-bit coprocessor-specific opcode.可选的3位操作码。
Rt
is an ARM source register. Rt must not be PC. 要读取的ARM寄存器,不能为PC寄存器。
CRn, CRm
are coprocessor registers.要写入的协处理器寄存器。
MRC详细的语义介绍如下:
Syntax
MRC{cond} coproc, #opcode1, Rt, CRn, CRm{, #opcode2} where:
cond
is an optional condition code. 可选的条件码。
coproc
is the name of the coprocessor the instruction is for. The standard name is pn, where n is an integer in the range 0 to 15.协处理器的名称,标准名称为pn,其中n为0-15,例如p14、p15。
opcode1
is a 3-bit coprocessor-specific opcode.3位的操作码。
opcode2
is an optional 3-bit coprocessor-specific opcode.可选的3位操作码
Rt
is the ARM destination register. Rt must not be PC.要写入的ARM寄存器,不能为PC寄存器。
Rt can be APSR_nzcv. This means that the coprocessor executes an instruction that changes the value of the condition flags in the APSR. Rt也可以为APSR_nzcv。
CRn, CRm
are coprocessor registers.要读取的协处理器寄存器。
3、MMU汇编代码
在arch\arm\arm\include\arm.h文件中,封装了CP15协处理器相关的寄存器操作汇编函数。我们主要看下MMU相关的部分。
3.1 CP15 C2 TTBR转换表基地址寄存器
代码比较简单,结合下图,自行查看即可。该图来自《ARM Cortex-A9 Technical Reference Manual r4p1》CP15 system control registers grouped by CRn order部分。
STATIC INLINE UINT32 OsArmReadTtbr(VOID)
{
UINT32 val;
__asm__ volatile("mrc p15, 0, %0, c2,c0,0" : "=r"(val));
return val;
} STATIC INLINE VOID OsArmWriteTtbr(UINT32 val)
{
__asm__ volatile("mcr p15, 0, %0, c2,c0,0" ::"r"(val));
__asm__ volatile("isb" ::: "memory");
} STATIC INLINE UINT32 OsArmReadTtbr0(VOID)
{
UINT32 val;
__asm__ volatile("mrc p15, 0, %0, c2,c0,0" : "=r"(val));
return val;
} STATIC INLINE VOID OsArmWriteTtbr0(UINT32 val)
{
__asm__ volatile("mcr p15, 0, %0, c2,c0,0" ::"r"(val));
__asm__ volatile("isb" ::: "memory");
} STATIC INLINE UINT32 OsArmReadTtbr1(VOID)
{
UINT32 val;
__asm__ volatile("mrc p15, 0, %0, c2,c0,1" : "=r"(val));
return val;
} STATIC INLINE VOID OsArmWriteTtbr1(UINT32 val)
{
__asm__ volatile("mcr p15, 0, %0, c2,c0,1" ::"r"(val));
__asm__ volatile("isb" ::: "memory");
} STATIC INLINE UINT32 OsArmReadTtbcr(VOID)
{
UINT32 val;
__asm__ volatile("mrc p15, 0, %0, c2,c0,2" : "=r"(val));
return val;
} STATIC INLINE VOID OsArmWriteTtbcr(UINT32 val)
{
__asm__ volatile("mcr p15, 0, %0, c2,c0,2" ::"r"(val));
__asm__ volatile("isb" ::: "memory");
}
3.2 CP15 C7 高速缓存寄存器
代码比较简单,结合下图,自行查看即可。该图是C7寄存器的部分截图。
STATIC INLINE UINT32 OsArmReadBpiall(VOID)
{
UINT32 val;
__asm__ volatile("mrc p15, 0, %0, c7,c5,6" : "=r"(val));
return val;
} STATIC INLINE VOID OsArmWriteBpiall(UINT32 val)
{
__asm__ volatile("mcr p15, 0, %0, c7,c5,6" ::"r"(val));
__asm__ volatile("isb" ::: "memory");
} STATIC INLINE UINT32 OsArmReadBpiallis(VOID)
{
UINT32 val;
__asm__ volatile("mrc p15, 0, %0, c7,c1,6" : "=r"(val));
return val;
} STATIC INLINE VOID OsArmWriteBpiallis(UINT32 val)
{
__asm__ volatile("mcr p15, 0, %0, c7,c1,6" ::"r"(val));
__asm__ volatile("isb" ::: "memory");
}
3.3 CP15 C13 进程标识符寄存器
代码比较简单,结合下图,自行查看即可。
STATIC INLINE UINT32 OsArmReadContextidr(VOID)
{
UINT32 val;
__asm__ volatile("mrc p15, 0, %0, c13,c0,1" : "=r"(val));
return val;
} STATIC INLINE VOID OsArmWriteContextidr(UINT32 val)
{
__asm__ volatile("mcr p15, 0, %0, c13,c0,1" ::"r"(val));
__asm__ volatile("isb" ::: "memory");
}
4 MMU上下文切换
在之前的系列,我们了解到每个用户进程都有独立的进程空间。在进程切换时,MMU上下文也会切换,相应的函数为LOS_ArchMmuContextSwitch()。快速分析下该函数的代码。
⑴处读取TTBCR寄存器的状态值,如果传入参数archMmu不为空,执行⑵使能TTBR0,否则执行⑶使其失能TTBR0。⑷处把内核地址空间的进程空间标识符asid写入C13寄存器。⑸处更新TTB页表基地址和TTB状态信息到相应寄存器。⑹处把进程空间的进程标识符写入C13寄存器。
VOID LOS_ArchMmuContextSwitch(LosArchMmu *archMmu)
{
UINT32 ttbr;
⑴ UINT32 ttbcr = OsArmReadTtbcr();
if (archMmu) {
⑵ ttbr = MMU_TTBRx_FLAGS | (archMmu->physTtb);
/* enable TTBR0 */
ttbcr &= ~MMU_DESCRIPTOR_TTBCR_PD0;
} else {
⑶ ttbr = 0;
/* disable TTBR0 */
ttbcr |= MMU_DESCRIPTOR_TTBCR_PD0;
} #ifdef LOSCFG_KERNEL_VM
/* from armv7a arm B3.10.4, we should do synchronization changes of ASID and TTBR. */
⑷ OsArmWriteContextidr(LOS_GetKVmSpace()->archMmu.asid);
ISB;
#endif
⑸ OsArmWriteTtbr0(ttbr);
ISB;
OsArmWriteTtbcr(ttbcr);
ISB;
#ifdef LOSCFG_KERNEL_VM
if (archMmu) {
⑹ OsArmWriteContextidr(archMmu->asid);
ISB;
}
#endif
}
小结
本文介绍了ARM CP15协处理器的知识,接着介绍下协处理器相关的汇编指令,最后分析下MMU相关汇编代码。感谢阅读,有什么问题,请留言。
鸿蒙轻内核源码分析:MMU协处理器的更多相关文章
- 鸿蒙轻内核源码分析:文件系统LittleFS
摘要:本文先介绍下LFS文件系统结构体的结构体和全局变量,然后分析下LFS文件操作接口. 本文分享自华为云社区<# 鸿蒙轻内核M核源码分析系列二一 02 文件系统LittleFS>,作者: ...
- 鸿蒙轻内核源码分析:文件系统FatFS
摘要:本文为大家介绍FatFS文件系统结构体的结构体和全局变量,并分析FatFS文件操作接口. 本文分享自华为云社区<鸿蒙轻内核M核源码分析系列二一 03 文件系统FatFS>,作者:zh ...
- v82.01 鸿蒙内核源码分析 (协处理器篇) | CPU 的好帮手 | 百篇博客分析 OpenHarmony 源码
本篇关键词:CP15 .MCR.MRC.ASID.MMU 硬件架构相关篇为: v65.01 鸿蒙内核源码分析(芯片模式) | 回顾芯片行业各位大佬 v66.03 鸿蒙内核源码分析(ARM架构) | A ...
- 鸿蒙内核源码分析(寄存器篇) | 小强乃宇宙最忙存储器 | 百篇博客分析OpenHarmony源码 | v38.02
百篇博客系列篇.本篇为: v38.xx 鸿蒙内核源码分析(寄存器篇) | 小强乃宇宙最忙存储器 | 51.c.h .o 硬件架构相关篇为: v22.xx 鸿蒙内核源码分析(汇编基础篇) | CPU在哪 ...
- 鸿蒙内核源码分析(工作模式篇) | CPU是韦小宝,七个老婆 | 百篇博客分析OpenHarmony源码 | v36.04
百篇博客系列篇.本篇为: v36.xx 鸿蒙内核源码分析(工作模式篇) | CPU是韦小宝,七个老婆 | 51.c.h .o 硬件架构相关篇为: v22.xx 鸿蒙内核源码分析(汇编基础篇) | CP ...
- 鸿蒙内核源码分析(内存汇编篇) | 谁是虚拟内存实现的基础 | 百篇博客分析OpenHarmony源码 | v14.14
百篇博客系列篇.本篇为: v14.xx 鸿蒙内核源码分析(内存汇编篇) | 谁是虚拟内存实现的基础 | 51.c.h .o 内存管理相关篇为: v11.xx 鸿蒙内核源码分析(内存分配篇) | 内存有 ...
- v87.01 鸿蒙内核源码分析 (内核启动篇) | 从汇编到 main () | 百篇博客分析 OpenHarmony 源码
本篇关键词:内核重定位.MMU.SVC栈.热启动.内核映射表 内核汇编相关篇为: v74.01 鸿蒙内核源码分析(编码方式) | 机器指令是如何编码的 v75.03 鸿蒙内核源码分析(汇编基础) | ...
- 鸿蒙内核源码分析(构建工具篇) | 顺瓜摸藤调试鸿蒙构建过程 | 百篇博客分析OpenHarmony源码 | v59.01
百篇博客系列篇.本篇为: v59.xx 鸿蒙内核源码分析(构建工具篇) | 顺瓜摸藤调试鸿蒙构建过程 | 51.c.h.o 编译构建相关篇为: v50.xx 鸿蒙内核源码分析(编译环境篇) | 编译鸿 ...
- 鸿蒙内核源码分析(编译脚本篇) | 如何防编译环境中的牛皮癣 | 百篇博客分析OpenHarmony源码 | v58.01
百篇博客系列篇.本篇为: v58.xx 鸿蒙内核源码分析(环境脚本篇) | 编译鸿蒙原来如此简单 | 51.c.h.o 本篇用两个脚本完成鸿蒙(L1)的编译环境安装/源码下载/编译过程,让编译,调试鸿 ...
- 鸿蒙内核源码分析(进程镜像篇)|ELF是如何被加载运行的? | 百篇博客分析OpenHarmony源码 | v56.01
百篇博客系列篇.本篇为: v56.xx 鸿蒙内核源码分析(进程映像篇) | ELF是如何被加载运行的? | 51.c.h.o 加载运行相关篇为: v51.xx 鸿蒙内核源码分析(ELF格式篇) | 应 ...
随机推荐
- CSP-2023 复赛游记
10.15 决定以后每天晚上都来. 洛天依也是. 10.16 想住 首旅京伦. 大巴车要求车况良好,保险齐全,进校后限速 20 km是什么鬼啊,新型速度单位. 距离最远的考区相距4公里 懂了,大巴车开 ...
- go实现一个切片迭代器
go实现一个简单的切片迭代器 package main import "fmt" type iterator struct { data []int index int // 索引 ...
- 在 Ubuntu 22.04 系统上为 SSH 开启基于时间的 TOTP 认证
前言 一次性密码(英语:one-time password,简称OTP),又称动态密码或单次有效密码,是指电脑系统或其他数字设备上只能使用一次的密码,有效期为只有一次登录会话或一段短时间内.基于时间的 ...
- OpenAI宫斗反转反转再反转,到底是资本任性还是人性扭曲?
最近OpenAI发生了一件大事,创始人山姆·奥特曼被董事会开除了,这在AI界引起了轩然大波. 事件经过 我们先来捋一下事件经过,时间以美国旧金山当地时间为准. 11月17日 11月17日12点(北京时 ...
- Streamlit 快速构建交互式页面的python库
基础介绍 streamlit 是什么 Streamlit是一个面向机器学习和数据科学团队的开源应用程序框架,通过它可以用python代码方便快捷的构建交互式前端页面.streamlit特别适合结合大模 ...
- 公司敏感数据被上传Github,吓得我赶紧改提交记录
大家好,我是小富- 说个事吧!最近公司发生了一个事故,有同事不小心把敏感数据上传到了GitHub上,结果被安全部门扫描出来了.这件事导致公司对所有员工进行了一次数据安全的培训.对于这个事我相信,有点工 ...
- 吉特日化MES系统&生产工艺控制参数对照表
吉特日化MES生产工艺参数对照表 工艺编号 PROCE_BASE_TIMER 工艺名称 定时器 工艺说明 主要用于生产工艺步骤过程计时 参数编号 参数名称 参数描述 Prop_Timer_Enable ...
- SpringBoot整合简单的定时任务~
定时任务框架很多种Quartz,SpringTask,xxljob,PowerJob... 1.JDK提供的timer // JDK提供的 Timer timer = new Timer(); //t ...
- IDEA创建Springboot项目在application.yml配置文件配置了nacos远程注册中心,启动项目还是找localhost的问题
项目结构如下: 报错如下: 解决办法: # 错误的 #spring.cloud.nacos.config.server-addr=192.168.137.137:8848 #spring.cloud. ...
- C++ Qt开发:TreeWidget 树形选择组件
Qt 是一个跨平台C++图形界面开发库,利用Qt可以快速开发跨平台窗体应用程序,在Qt中我们可以通过拖拽的方式将不同组件放到指定的位置,实现图形化开发极大的方便了开发效率,本章将重点介绍TreeWid ...