单细胞转录组上游fasta文件处理
单细胞分析上游fasta文件处理
——基于cellranger与dropseqRunner
###如果测序文件由10X genomics平台产生,则采用cellranger count的基本流程进行fasta文件的上游处理;如果测序文件由dropseq平台产生,则采用dropseqRunner软件进行处理
一、cellranger配置
1、软件安装并查看帮助文档
#安装包下载
wget -O cellranger-7.1.0.tar.gz "https://cf.10xgenomics.com/releases/cell-exp/cellranger-7.1.0.tar.gz?Expires=1694703729&Policy=eyJTdGF0ZW1lbnQiOlt7IlJlc291cmNlIjoiaHR0cHM6Ly9jZi4xMHhnZW5vbWljcy5jb20vcmVsZWFzZXMvY2VsbC1leHAvY2VsbHJhbmdlci03LjEuMC50YXIuZ3oiLCJDb25kaXRpb24iOnsiRGF0ZUxlc3NUaGFuIjp7IkFXUzpFcG9jaFRpbWUiOjE2OTQ3MDM3Mjl9fX1dfQ__&Signature=YmIZ3TsEI7VxGNIY7SdL~8oH0jr7ktjMZ48HRiLDQfcYLN4YWcs5nk0CZeKkeemvygGK3VryeHnvZpA21r2jN2YKfSeAHC03t-aDKzjctzbPvnv9UbckvrOghyxW7mH14W7uzMJJ1C9PbBo869EDRH04vxfsYGFQONCxvb~iBamTU1ZJ-6etWVioLjzb7o4-Y3v4v46nw67qf2NaPTwNXr4PIA-vFdWe9v9YhQQM6VlHR8a5crTmaM39hGC~2PatW0qlEd-DsMHeeNb34~Gr5N8XNIHv6K1VcuMq8VobqLQKxeoz3obmA23~kWkPNOSZNCVXosd0p6Ok7fUHiVUt-Q__&Key-Pair-Id=APKAI7S6A5RYOXBWRPDA" &
#解压文件
tar -zxvf cellranger-7.0.1.tar.gz
#把cellranger的路径加到$PATH中方便调用
vi ~/.bashrc
export PATH=”/data5/tan/zengchuanj/Software/cellranger-7.1.0/bin:$PATH”
echo 'export PATH=/data5/tan/zengchuanj/Software/cellranger-7.1.0/:$PATH' >> ~/.bashrc
#更新系统配置文件
source ~/.bashrc
#查看cellranger使用说明
cellranger count --help
2、参考基因组下载
#人类参考基因组数据集
wget -o human.log https://cf.10xgenomics.com/supp/cell-exp/refdata-gex-GRCh38-2020-A.tar.gz &
tar -xvf refdata-gex-GRCh38-2020-A.tar.gz
#mouse参考基因组数据集下载
wget -o mouse.log https://cf.10xgenomics.com/supp/cell-exp/refdata-gex-mm10-2020-A.tar.gz &
tar -xvf refdata-gex-mm10-2020-A.tar.gz
#测试数据集下载
wget -o sample.log 'http://cf.10xgenomics.com/samples/cell-exp/2.1.0/neurons_900/neurons_900_fastqs.tar' &
tar -xvf neurons_900_fastqs.tar #解压
cellranger count --id=result --transcriptome=../refdata-gex-mm10-2020-A/ --fastqs=/neurons_900_fastqs --sample=neurons_900 --expect-cells=1000 --nosecondary
Attention:#count函数参数解释
cellranger count --id=sample \
--transcriptome=/opt/refdata-cellranger-GRCh38-1.2.0 \
--fastqs=/home/scRNA/runs/HAWT7ADXX/outs/fastq_path \
--sample=mysample \
--expect-cells=1000 \
--nosecondary
# id指定输出文件存放目录名
# transcriptome指定与CellRanger兼容的参考基因组
# fastqs指定mkfastq或者自定义的测序文件
# sample要和fastq文件的前缀中的sample保持一致,作为软件识别的标志
# expect-cells指定复现的细胞数量,这个要和实验设计结合起来
# nosecondary 只获得表达矩阵,不进行后续的降维、聚类和可视化分析(反正后续要走Seurat,为了节省计算资源,建议加上)
3、结果解读
Ref:https:/zhuanlan.zhihu.com/p/390516422
Outputs:
- Run summary HTML: /data5/tan/zengchuanj/pipeline/cellranger/result/outs/web_summary.html
- Run summary CSV: /data5/tan/zengchuanj/pipeline/cellranger/result/outs/metrics_summary.csv
- BAM: /data5/tan/zengchuanj/pipeline/cellranger/result/outs/possorted_genome_bam.bam
- BAM index: /data5/tan/zengchuanj/pipeline/cellranger/result/outs/possorted_genome_bam.bam.bai
- Filtered feature-barcode matrices MEX: /data5/tan/zengchuanj/pipeline/cellranger/result/outs/filtered_feature_bc_matrix
- Filtered feature-barcode matrices HDF5: /data5/tan/zengchuanj/pipeline/cellranger/result/outs/filtered_feature_bc_matrix.h5
- Unfiltered feature-barcode matrices MEX: /data5/tan/zengchuanj/pipeline/cellranger/result/outs/raw_feature_bc_matrix
- Unfiltered feature-barcode matrices HDF5: /data5/tan/zengchuanj/pipeline/cellranger/result/outs/raw_feature_bc_matrix_h5.h5
- Secondary analysis output CSV: /data5/tan/zengchuanj/pipeline/cellranger/result/outs/analysis
- Per-molecule read information: /data5/tan/zengchuanj/pipeline/cellranger/result/outs/molecule_info.h5
- Loupe Browser file: /data5/tan/zengchuanj/pipeline/cellranger/result/outs/cloupe.cloupe
- outs/raw_feature_bc_matrix: 这个文件夹包含原始的基因表达矩阵,每一行代表一个基因,每一列代表一个细胞。这个矩阵中的值表示每个细胞中每个基因的表达水平。这个矩阵没有经过任何的标准化或过滤。
- outs/filtered_feature_bc_matrix: 这个文件夹包含经过过滤后的基因表达矩阵。在这个矩阵中,已经去除了低质量的细胞和低表达的基因。这是进行后续分析的主要输入。此文件夹包含三个文件:barcodes.tsv.gz、features.tsv.gz和matrix.mtx.gz。这些文件包含了每个细胞的条形码、每个特征的名称和每个细胞中每个特征的计数。
- outs/metrics_summary.csv: 这个CSV文件包含了关于每个细胞和每个样本的一些质量控制指标,例如细胞计数、平均基因表达水平等。
- outs/web_summary.html: 这个HTML文件提供了一个交互式的可视化界面,用于查看分析的总结结果,包括细胞计数、质量控制指标、细胞类型聚类等。
- outs/cloupe.cloupe: 这是一个文件,可以用于在10x Genomics的Loupe浏览器中查看和分析单细胞数据。Loupe浏览器提供了丰富的数据可视化和分析功能。
二、dropseqRunner的配置
1、conda的安装
dropseqRunner是个依赖conda和python的环境,在安装前确保自己的服务器中有与之兼容的conda与python
wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-5.3.1-Linux-x86_64.sh
bash Anaconda3-5.3.1-Linux-x86_64.sh
2、Dropseq的安装
wget https://codeload.github.com/aselewa/dropseqRunner/zip/master
mv master master.zip
unzip master.zip
#创建dropseq运行的conda环境
conda env create -f environment.yaml
#每次运行dropseq前需要进行激活,不激活环境则无法调用snakemake
conda activate dropRunner
#编译,不编译无法出现主脚本
make
3、下载参考数据并构建比对索引
#这里以小鼠的为例
wget -o mm.log https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/635/GCF_000001635.27_GRCm39/GCF_000001635.27_GRCm39_genomic.fna.gz &
#安装处理gff文件软件
conda install gffread
#将gff文件转换为gtf文件
gffread GCF_000001635.27_GRCm39_genomic.gff -T -o mice.gtf
#建参考数据库
STAR --runThreadN 4 --runMode genomeGenerate --genomeDir reference/ --genomeFastaFiles GCF_000001635.27_GRCm39_genomic.fna --sjdbGTFfile mice.gtf
4、Dropseq使用方法
python /dropseqRunner-master/dropRunner.py --R1 SRR11799731_R1.fastq.gz --R2 SRR11799731_R2.fastq.gz --indices /dropseqRunner-master/db/reference --sample SRR11799731 --protocol drop
#主程序使用方法
#各个参数:
#R1 R2,分别是你的两个fastq文件
#--indices是刚才构建好的参考数据集
#--sample是样本前缀名
#运行完毕后用于Seurat的数据存在/sample/output/SRR11799731_0_Solo.out/Gene
三、Error自查
Attention error:主要是下载、安装、配置上的问题
1、 dropseqRunner下载问题
#下载dropseq
git clone git@github.com:aselewa/dropseqRunner.git
cd dropseqRunner
这个问题是关于使用Git克隆dropseqRunner时出现了权限拒绝错误。错误信息是“Permission denied (publickey)”。
这个错误通常是由于缺少SSH密钥或使用了错误的SSH密钥导致的。以下是一些可能的解决方法:
- 检查SSH密钥
在本地计算机上生成SSH密钥,并将公钥添加到GitHub帐户中。可以使用以下命令检查是否存在SSH密钥:
ls -al ~/.ssh
如果没有SSH密钥,请使用以下命令生成:
ssh-keygen -t rsa -b 4096 -C "your_email@example.com"
然后将公钥添加到GitHub帐户中。
- 使用HTTPS URL
使用HTTPS URL而不是SSH URL来克隆dropseqRunner。使用以下命令:
git clone https://github.com/aselewa/dropseqRunner.git
这将使用HTTPS URL克隆`dropseqRunner`,而不需要SSH密钥。
- 检查GitHub帐户权限
确保你的GitHub帐户具有克隆dropseqRunner的权限。如果您没有访问权限,请联系仓库的所有者以获取访问权限。
Ps:如果这些都解决不了,建议开始摆烂
- wget登场
wget https://codeload.github.com/aselewa/dropseqRunner/zip/master


之前以为Github仓库的master分支基本上应该是提交代码的记录,实际master是个二进制文件,后续发现实际应该是个.zip文件。
2、dropseqRunner配置问题


这一问题主要是因为environment.yaml下载错误,重新下载安装即可。
单细胞转录组上游fasta文件处理的更多相关文章
- fasta文件拆分与合并
Linux中fasta文件的拆分与合并 FASTA文件的拆分: (1)如果从一个文件a提取第11至20个序列存到另一个文件b: awk -v RS='>' 'NR>1{i++}i>= ...
- python学习——读取染色体长度(七:读取fasta文件)
读取fasta文件genome_test.fa,并计算染色体总长,同时输出最长染色体编号.序列以及长度 fasta文件genom_test.fa的内容如下: >chr1ATATATATAT> ...
- Linux文件排序和FASTA文件操作
文件排序 seq: 产生一系列的数字; man seq查看其具体使用.我们这使用seq产生下游分析所用到的输入文件. # 产生从1到10的数,步长为1 $ seq 1 10 1 2 3 4 5 6 7 ...
- 单细胞转录组测序数据的可变剪接(alternative splicing)分析方法总结
可变剪接(alternative splicing),在真核生物中是一种非常基本的生物学事件.即基因转录后,先产生初始RNA或称作RNA前体,然后再通过可变剪接方式,选择性的把不同的外显子进行重连,从 ...
- 单细胞转录组测序技术(scRNA-seq)及细胞分离技术分类汇总
单细胞测序流程(http://learn.gencore.bio.nyu.edu) 在过去的十多年里,高通量测序技术被广泛应用于生物和医学的各种领域,极大促进了相关的研究和应用.其中转录组测序(RNA ...
- Nature Methods | 新软件SAVER-X可对单细胞转录组学数据进行有效降噪
图片来源(Nature Methods) 摘要 单细胞转 ...
- 单细胞测序|单细胞基因组|单细胞转录组|Gene editing|
单细胞测序 单细胞基因组学 测量理由是单细胞的时间空间特异性. Gene expression&co-expression 比较正常cell与疾病cell,正常organ与疾病organ,看出 ...
- perl 多fasta文件匹配,并提取匹配文件第一条序列
目标如题,有多个fasta文件和一个文件名列表,将文件名列表中包含的文件匹配出来并提取第一条序列合并成一个fa文件. 这个采用perl实现,用法和代码如下: 1 #!/usr/bin/perl -w ...
- mothur summary.seqs 统计fasta文件中每条序列的长度
在介绍summary.seqs的用法之前,我们首先需要搞清楚两个概念: 1)ambiguous bases 中文叫做模糊碱基,对于DNA序列来说,只有ATCG 4种碱基,在IUPAC定义的碱基标准中, ...
- 文献阅读 | The single-cell transcriptional landscape of mammalian organogenesis | 器官形成 | 单细胞转录组
The single-cell transcriptional landscape of mammalian organogenesis 老板已经提了无数遍的文章,确实很nb,这个工作是之前我们无法想 ...
随机推荐
- win10离线安装.net3.5失败的解决方案
简介: 问题:有时候需要离线安装.net3.5环境,网上的教程一般都是通过NetFx3.cab进行离线安装,但有时候会出现离线安装失败,比如: by~MaQaQ 2024-06-04 分析: 1.先关 ...
- WXS 模块
https://developers.weixin.qq.com/miniprogram/dev/framework/view/wxs/01wxs-module.html 2.1.概述 WXS(Wei ...
- 夜莺中心端管理categraf采集规则并下发
痛点 市面上常见的采集器,比如 telegraf.grafana-agent.datadog-agent 等,通常内置了多种采集插件,比如可以采集操作系统的常规指标,也可以采集 mysql.redis ...
- Prometheus + Grafana (1) 监控
简介 Micrometer/Prometheus/Grafana体系是当前最成熟的低成本Java监控解决方案,而且通过其他的Prometheus exporter,还可以进行诸如我们可能需要的Wind ...
- excel计算日期天数和表格冻结首行
excel计算日期天数和表格冻结首行 1.在单元格E35中输入公式DATEDIF(A35.B35."MD")MD表起始日期.结束日期天数差."Y" 时间段中的整 ...
- Xcode调试内存最新理解
前提: Xcode 16.0 beta 设置 Scheme设置中勾选Malloc Scribble.Malloc Stack Logging. 这么做是为了在Memory Graph.Profile中 ...
- python 无监督生成模型
无监督生成模型在机器学习中扮演着重要角色,特别是当我们在没有标签数据的情况下想要生成新的样本或理解数据的内在结构时.一种流行的无监督生成模型是生成对抗网络(Generative Adversarial ...
- 《DNK210使用指南 -CanMV版 V1.0》第三章 CanMV简介
第三章 CanMV简介 1)实验平台:正点原子DNK210开发板 2) 章节摘自[正点原子]DNK210使用指南 - CanMV版 V1.0 3)购买链接:https://detail.tmall.c ...
- 全志T3+FPGA国产核心板——Pango Design Suite的FPGA程序加载固化
本文主要基于紫光同创Pango Design Suite(PDS)开发软件,演示FPGA程序的加载.固化,以及程序编译等方法.适用的开发环境为Windows 7/10 64bit. 测试板卡为全志T3 ...
- python 转换PDF 到 EPS
from win32com.client.dynamic import ERRORS_BAD_CONTEXT as ebc from win32com.client import DispatchEx ...