原题链接在这里:https://leetcode.com/problems/minimum-cost-to-merge-stones/

题目:

There are N piles of stones arranged in a row.  The i-th pile has stones[i] stones.

move consists of merging exactly K consecutive piles into one pile, and the cost of this move is equal to the total number of stones in these K piles.

Find the minimum cost to merge all piles of stones into one pile.  If it is impossible, return -1.

Example 1:

Input: stones = [3,2,4,1], K = 2
Output: 20
Explanation:
We start with [3, 2, 4, 1].
We merge [3, 2] for a cost of 5, and we are left with [5, 4, 1].
We merge [4, 1] for a cost of 5, and we are left with [5, 5].
We merge [5, 5] for a cost of 10, and we are left with [10].
The total cost was 20, and this is the minimum possible.

Example 2:

Input: stones = [3,2,4,1], K = 3
Output: -1
Explanation: After any merge operation, there are 2 piles left, and we can't merge anymore. So the task is impossible.

Example 3:

Input: stones = [3,5,1,2,6], K = 3
Output: 25
Explanation:
We start with [3, 5, 1, 2, 6].
We merge [5, 1, 2] for a cost of 8, and we are left with [3, 8, 6].
We merge [3, 8, 6] for a cost of 17, and we are left with [17].
The total cost was 25, and this is the minimum possible.

Note:

  • 1 <= stones.length <= 30
  • 2 <= K <= 30
  • 1 <= stones[i] <= 100

题解:

Each merge step, piles number decreased by K-1. Eventually there is only 1 pile. n - mergeTimes * (K-1) == 1. megeTimes = (n-1)/(K-1). If it is not divisable, then it could not merge into one pile, thus return -1.

Let dp[i][j] denotes minimum cost to merge [i, j] inclusively.

m = i, i+1, ... j-1. Let i to m be one pile, and m+1 to j to certain piles. dp[i][j] = min(dp[i][m] + dp[m+1][j]).

In order to make i to m as one pile, [i,m] inclusive length is multiple of K. m moves K-1 each step.

If [i, j] is multiple of K, then dp[i][j] could be merged into one pile. dp[i][j] += preSum[j+1] - preSum[i].

return dp[0][n-1], minimum cost to merge [0, n-1] inclusively.

Time Complexity: O(n^3/K).

Space: O(n^2).

AC Java:

 class Solution {
public int mergeStones(int[] stones, int K) {
int n = stones.length;
if((n-1)%(K-1) != 0){
return -1;
} int [] preSum = new int[n+1];
for(int i = 1; i<=n; i++){
preSum[i] = preSum[i-1] + stones[i-1];
} int [][] dp = new int[n][n];
for(int size = 2; size<=n; size++){
for(int i = 0; i<=n-size; i++){
int j = i+size-1;
dp[i][j] = Integer.MAX_VALUE; for(int m = i; m<j; m += K-1){
dp[i][j] = Math.min(dp[i][j], dp[i][m]+dp[m+1][j]);
} if((size-1) % (K-1) == 0){
dp[i][j] += preSum[j+1] - preSum[i];
}
}
} return dp[0][n-1];
}
}

类似Burst Balloons.

LeetCode 1000. Minimum Cost to Merge Stones的更多相关文章

  1. 1000. Minimum Cost to Merge Stones

    There are N piles of stones arranged in a row.  The i-th pile has stones[i] stones. A move consists ...

  2. [LeetCode] Minimum Cost to Merge Stones 混合石子的最小花费

    There are N piles of stones arranged in a row.  The i-th pile has stones[i] stones. A move consists ...

  3. [Swift]LeetCode1000. 合并石头的最低成本 | Minimum Cost to Merge Stones

    There are N piles of stones arranged in a row.  The i-th pile has stones[i] stones. A move consists ...

  4. 动态规划-Minimum Cost to Merge Stones

    2019-07-07 15:48:46 问题描述: 问题求解: 最初看到这个问题的时候第一反应就是这个题目和打破气球的题目很类似. 但是我尝试了使用dp将问题直接转为直接合并到一个堆问题复杂度迅速提高 ...

  5. LeetCode 983. Minimum Cost For Tickets

    原题链接在这里:https://leetcode.com/problems/minimum-cost-for-tickets/ 题目: In a country popular for train t ...

  6. LeetCode 1130. Minimum Cost Tree From Leaf Values

    原题链接在这里:https://leetcode.com/problems/minimum-cost-tree-from-leaf-values/ 题目: Given an array arr of ...

  7. [LeetCode] 857. Minimum Cost to Hire K Workers 雇佣K名工人的最低成本

    There are N workers.  The i-th worker has a quality[i] and a minimum wage expectation wage[i]. Now w ...

  8. [LeetCode] 857. Minimum Cost to Hire K Workers 雇K个工人的最小花费

    There are N workers.  The i-th worker has a quality[i] and a minimum wage expectation wage[i]. Now w ...

  9. Leetcode之动态规划(DP)专题-详解983. 最低票价(Minimum Cost For Tickets)

    Leetcode之动态规划(DP)专题-983. 最低票价(Minimum Cost For Tickets) 在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行.在接下来的一年里,你要旅行的 ...

随机推荐

  1. Centos7 yum方式安装MySQL

    1.下载安装源 wget -i -c http://dev.mysql.com/get/mysql57-community-release-el7-10.noarch.rpm 2.yum方式安装 yu ...

  2. git第一次上传push失败解决

    第一次上传有可能会遇到push失败的情况,那是因为跟SVN一样,github上有一个README.md 文件没有下载下来 .我们得先 git pull --rebase origin master   ...

  3. pytest_命令行传参

    前言 命令行参数是根据命令行选项将不同的值传递给测试函数,比如平常在cmd执行"pytest --html=report.html",这里面的”--html=report.html ...

  4. 【爬坑笔记】c# 如何通过EF Core读写sql server的类似double型字段

    =============================================== 2019/8/31_第1次修改                       ccb_warlock == ...

  5. Hibernate的关联映射--一对多、

    这是我 1 单向一对多: 实体类:(课程类)Grade与(学生类)Student的一对多关系 学生类: public class Student implements java.io.Serializ ...

  6. 所有子模块都要执行的checkstyle检查

    <!-- 所有子模块都要执行的checkstyle检查 --> <plugin> <groupId>org.apache.maven.plugins</gro ...

  7. spark-sql使用笔记

    如何使用hive的udf 可以使用spark-sql --jars /opt/hive/udf.jar,指定udf的路径 还可以在spark-default.conf里指定spark.jars /op ...

  8. 2019-07-25 PDO

    PDO是什么? pdo是php数据对象,即php data object .使用pdo是为了让我们能够使用相同的代码连接不同的数据库.PDO扩展是以面向对象的方式来进行封装,也就是说,我们的PDO扩展 ...

  9. iOS 12中获取WiFi的SSID

    开始搞智能家居,wifi获取不到了?? 小插曲 旧方法失效,19-12-15更新,ios13开始需要请求定位信息 SSID全称Service Set IDentifier, 即Wifi网络的公开名称. ...

  10. github上传本地项目代码

    进入github首页,点击新项目new repository,如下图所示: 然后进入如下页面,填写信息: 最后点击Create repository,生成如下页面: 红色圈圈画的步骤,先点击Clone ...