我们知道max,假如说我有两个数,a和b,并且a>b,如果取max,那么就直接取a,没有第二种可能。但有的时候我不想这样,因为这样会造成分值小的那个饥饿。所以我希望分值大的那一项经常取到,分值小的那一项也偶尔可以取到,那么我用softmax就可以了 现在还是a和b,a>b,如果我们取按照softmax来计算取a和b的概率,那a的softmax值大于b的,所以a会经常取到,而b也会偶尔取到,概率跟它们本来的大小有关。所以说不是max,而是 Soft max 那各自的概率究竟是多少呢,我们下面就来具体看一下

定义

    假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素的Softmax值就是

    

    也就是说,是该元素的指数,与所有元素指数和的比值

    这个定义可以说非常的直观,当然除了直观朴素好理解以外,它还有更多的优点

    《一天搞懂深度学习》:

   

1.计算与标注样本的差距

    在神经网络的计算当中,我们经常需要计算按照神经网络的正向传播计算的分数S1,和按照正确标注计算的分数S2,之间的差距,计算Loss,才能应用反向传播。Loss定义为交叉熵

    

    取log里面的值就是这组数据正确分类的Softmax值,它占的比重越大,这个样本的Loss也就越小,这种定义符合我们的要求

2.计算上非常非常的方便

    当我们对分类的Loss进行改进的时候,我们要通过梯度下降,每次优化一个step大小的梯度

    我们定义选到yi的概率是

    

    然后我们求Loss对每个权重矩阵的偏导,应用链式法则

    

    最后结果的形式非常的简单,只要将算出来的概率的向量对应的真正结果的那一维减1,就可以了

    举个例子,通过若干层的计算,最后得到的某个训练样本的向量的分数是[ 1, 5, 3 ], 那么概率分别就是[0.015,0.866,0.117],如果这个样本正确的分类是第二个的话,那么计算出来的偏导就是[0.015,0.866−1,0.117]=[0.015,−0.134,0.117]然后再根据这个进行back propagation就可以了

softmax 函数的理解和优点的更多相关文章

  1. Sigmoid函数与Softmax函数的理解

    1. Sigmod 函数 1.1 函数性质以及优点 其实logistic函数也就是经常说的sigmoid函数,它的几何形状也就是一条sigmoid曲线(S型曲线).               其中z ...

  2. 深度学习基础系列(四)| 理解softmax函数

    深度学习最终目的表现为解决分类或回归问题.在现实应用中,输出层我们大多采用softmax或sigmoid函数来输出分类概率值,其中二元分类可以应用sigmoid函数. 而在多元分类的问题中,我们默认采 ...

  3. [Machine Learning] logistic函数和softmax函数

    简单总结一下机器学习最常见的两个函数,一个是logistic函数,另一个是softmax函数,若有不足之处,希望大家可以帮忙指正.本文首先分别介绍logistic函数和softmax函数的定义和应用, ...

  4. softmax函数详解

    答案来自专栏:机器学习算法与自然语言处理 详解softmax函数以及相关求导过程 这几天学习了一下softmax激活函数,以及它的梯度求导过程,整理一下便于分享和交流. softmax函数 softm ...

  5. Softmax函数详解与推导

    一.softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个 ...

  6. [转]softmax函数详解

    答案来自专栏:机器学习算法与自然语言处理 详解softmax函数以及相关求导过程 这几天学习了一下softmax激活函数,以及它的梯度求导过程,整理一下便于分享和交流. softmax函数 softm ...

  7. 深度学习(四) softmax函数

    softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素 ...

  8. 有关softmax函数代码实现的思考

    有关softmax函数代码实现的思考 softmax函数 def softmax2(x): if x.ndim == 2: x = x.T x = x - np.max(x, axis=0) y = ...

  9. opengl中对glOrtho()函数的理解

    glOrtho是创建一个正交平行的视景体. 一般用于物体不会因为离屏幕的远近而产生大小的变换的情况.比如,常用的工程中的制图等.需要比较精确的显示. 而作为它的对立情况, glFrustum则产生一个 ...

随机推荐

  1. 设置Kafka集群的方法

    1.目标 今天,在这篇Kafka文章中,我们将看到Kafka Cluster Setup.这个Kafka集群教程为我们提供了一些设置Kafka集群的简单步骤.简而言之,为了实现Kafka服务的高可用性 ...

  2. linux svn开机自动启动服务

    SVN设置开机自动启动 usr/lib/systemd/system/添加svn.service文件 home/sdbdatasvn/svnrepos(换成绝对路径) 如果出现权限问题,请chmod  ...

  3. 如何使用websocket实现前后端通信

    websocket通信是很好玩的,也很有用的的通信方式,使用方式如下: 第一步由于springboot很好地集成了websocket,所以先在在pom.xml文件中引入依赖 <dependenc ...

  4. Hive学习(2)

    什么是hive Hive是基于Hadoop的一个数据仓库工具(E抽取T转换L加载),可以将结构化的数据文件映射为一张表,并提供类SQL查询功能 hive的处理流程 ()将HQL语句转化为一组操作符 ( ...

  5. LeetCode | 152. 乘积最大子序列

    原题(Medium): 给定一个整数数组 nums ,找出一个序列中乘积最大的连续子序列(该序列至少包含一个数). 思路: 遍历数组时且逐元素相乘时,如果遇到了0,在求乘积最大值的情况下,0左边的元素 ...

  6. Mybatis @Result注解的使用案例

    @Result注解的使用

  7. golang---获取windows系统相关信息

    package main import ( "fmt" "net" "runtime" "strings" " ...

  8. lombok使用教程

    Lombok介绍.使用方法和总结https://www.cnblogs.com/heyonggang/p/8638374.html Lombok简介.使用.工作原理.优缺点https://www.ji ...

  9. 如何在Unity中创造真实的水

    你将要创造什么 Unity是由Unity Technologies开发的多平台游戏引擎,用于为控制台,移动设备,计算机甚至网站等多种设备创建视频游戏和应用程序.Unity的核心优势在于其稳健性,可移植 ...

  10. 常用 SQL*Plus 命令

    一些常用的 SQL*Plus 命令: 一.Help 命令 SQL*Plus 提供了help 命令来帮助用户查询指定的命令的选项.help 可以向用户提供被查询命令的标题.功能描述.缩写形式和参数选项( ...