awesome-RecSys
https://github.com/jihoo-kim/awesome-RecSys?fbclid=IwAR1m6OebmqO9mfLV1ta4OTihQc9Phw8WNS4zdr5IeT1X1OLWQvLk0Wz45f4
awesome-RecSys
A curated list of awesome Recommender System - designed by Jihoo Kim
Table of Contents
1. Books
- Recommender Systems: The Textbook (2016, Charu Aggarwal)
- Recommender Systems Handbook 2nd Edition (2015, Francesco Ricci)
- Recommender Systems Handbook 1st Edition (2011, Francesco Ricci)
- Recommender Systems An Introduction (2011, Dietmar Jannach) slides
2. Conferences
- AAAI (AAAI Conference on Artificial Intelligence)
- CIKM (ACM International Conference on Information and Knowledge Management)
- CSCW (ACM Conference on Computer-Supported Cooperative Work & Social Computing)
- ICDM (IEEE International Conference on Data Mining)
- IJCAI (International Joint Conference on Artificial Intelligence)
- ICLR (International Conference on Learning Representations)
- ICML (International Conference on Machine Learning)
- IUI (International Conference on Intelligent User Interfaces)
- NIPS (Neural Information Processing Systems)
- RecSys (ACM Conference on Recommender Systems)
- SDM (SIAM International Conference on Data Mining)
- SIGIR (ACM SIGIR Conference on Research and development in information retrieval)
- SIGKDD (ACM SIGKDD International Conference on Knowledge discovery and data mining)
- SIGMOD (ACM SIGMOD International Conference on Management of Data)
- VLDB (International Conference on Very Large Databases)
- WSDM (ACM International Conference on Web Search and Data Mining)
- WWW (International World Wide Web Conferences)
3. Researchers
- George Karypis (University of Minnesota)
- Joseph A. Konstan (University of Minnesota)
- Philip S. Yu (University of Illinons at Chicago)
- Charu Aggarwal (IBM T. J. Watson Research Center)
- Martin Ester (Simon Fraser University)
- Paul Resnick (University of Michigan)
- Peter Brusilovsky (University of Pittsburgh)
- Bamshad Mobasher (DePaul University)
- Alexander Tuzhilin (New York University)
- Yehuda Koren (Google)
- Barry Smyth (University College Dublin)
- Lior Rokach (Ben-Gurion University of the Negev)
- Loren Terveen (University of Minnesota)
- Chris Volinsky (AT&T Labs)
- Ed H. Chi (Google AI)
- Laks V.S. Lakshmanan (University of British Columbia)
- Badrul Sarwar (LinkedIn)
- Francesco Ricci (Free University of Bozen-Bolzano)
- Robin Burke (University of Colorado, Boulder)
- Brent Smith (Amazon)
- Greg Linden (Amazon, Microsoft)
- Hao Ma (Facebook AI)
- Giovanni Semeraro (University of Bari Aldo Moro)
- Dietmar Jannach (University of Klagenfurt)
4. Papers
- Explainable Recommendation: A Survey and New Perspectives (2018, Yongfeng Zhang)
- Deep Learning based Recommender System: A Survey and New Perspectives (2018, Shuai Zhang)
- Collaborative Variational Autoencoder for Recommender Systems (2017, Xiaopeng Li)
- Neural Collaborative Filtering (2017, Xiangnan He)
- Deep Neural Networks for YouTube Recommendations (2016, Paul Covington)
- Wide & Deep Learning for Recommender Systems (2016, Heng-Tze Cheng)
- Collaborative Denoising Auto-Encoders for Top-N Recommender Systems (2016, Yao Wu)
- AutoRec: Autoencoders Meet Collaborative Filtering (2015, Suvash Sedhain)
- Collaborative Deep Learning for Recommender Systems (2015, Hao Wang)
- Collaborative Filtering beyond the User-Item Matrix A Survey of the State of the Art and Future Challenges (2014, Yue Shi)
- Deep content-based music recommendation (2013, Aaron van den Oord)
- Time-aware Point-of-interest Recommendation (2013, Quan Yuan)
- Location-based and Preference-Aware Recommendation Using Sparse Geo-Social Networking Data (2012, Jie Bao)
- Context-Aware Recommender Systems for Learning: A Survey and Future Challenges (2012, Katrien Verbert)
- Exploiting Geographical Influence for Collaborative Point-of-Interest Recommendation (2011, Mao Ye)
- Recommender Systems with Social Regularization (2011, Hao Ma)
- The YouTube Video Recommendation System (2010, James Davidson)
- Matrix Factorization Techniques for Recommender Systems (2009, Yehuda Koren)
- A Survey of Collaborative Filtering Techniques (2009, Xiaoyuan Su)
- Collaborative Filtering with Temporal Dynamics (2009, Yehuda Koren)
- Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model (2008, Yehuda Koren)
- Collaborative Filtering for Implicit Feedback Datasets (2008, Yifan Hu)
- SoRec: social recommendation using probabilistic matrix factorization (2008, Hao Ma)
- Flickr tag recommendation based on collective knowledge (2008, Borkur Sigurbjornsson)
- Restricted Boltzmann machines for collaborative filtering (2007, Ruslan Salakhutdinov)
- Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions(2005, Gediminas Adomavicius)
- Evaluating collaborative filtering recommender systems (2004, Jonatan L. Herlocker)
- Amazon.com Recommendations: Item-to-Item Collaborative Filtering (2003, Greg Linden)
- Content-boosted collaborative filtering for improved recommendations (2002, Prem Melville)
- Item-based collaborative filtering recommendation algorithms (2001, Badrul Sarwar)
- Explaining collaborative filtering recommendations (2000, Jonatan L. Herlocker)
- An algorithmic framework for performing collaborative filtering (1999, Jonathan L. Herlocker)
- Empirical analysis of predictive algorithms for collaborative filtering (1998, John S. Breese)
- Social information filtering: Algorithms for automating "word of mouth" (1995, Upendra Shardanand)
- GroupLens: an open architecture for collaborative filtering of netnews (1994, Paul Resnick)
- Using collaborative filtering to weave an information tapestry (1992, David Goldberg)
5. GitHub Repositories
- List_of_Recommender_Systems (Software, Open Source, Academic, Benchmarking, Applications, Books)
- Deep-Learning-for-Recommendation-Systems (Papers, Blogs, Worshops, Tutorials, Software)
- RecommenderSystem-Paper (Papers, Tools, Frameworks)
- RSPapers (Papers)
- awesome-RecSys-papers (Papers)
- DeepRec (Tensorflow Codes)
- RecQ (Tensorflow Codes)
- NeuRec (Tensorflow Codes)
- Surprise (Python Library)
- LightFM (Python Library)
- Spotlight (Python Library)
- python-recsys (Python Library)
- TensorRec (Python Library)
- CaseRecommender (Python Library)
- recommenders (Jupyter Notebook Tutorial)
6. Useful Sites
- WikiCFP - Recommender System (Call For Papers of Conferences, Workshops and Journals - Recommender System)
- Guide2Research - Top CS Conference (Top Computer Science Conferences)
- PapersWithCode - Recommender System (Papers with Code - Recommender System)
- Coursera - Recommender System (University of Minnesota - Joseph A. Konstan)
7. Youtube Videos
- RecSys Paper Presentation Videos (ACM RecSys)
- Building Recommender System with Machine Learning and AI (Youtube SEO)
- Machine Learning - FULL COURSE | Andrew Ng | Stanford University (Lecture 16.1 ~ Lecture 16.6)
- Mining Massive Datasets - FULL COURSE | Stanford University (Lecture 41 ~ Lecture 45)
- Text Retrieval and Search Engines - FULL COURSE | UIUC (Lecture 38 ~ Lecture 42)
- Recommendation Systems - Learn Python for Data Science #3 (Siraj Raval)
- How does Netflix recommend movies? Matrix Factorization (Luis Serrano)
8. SlideShare PPT
- Recommender system introduction (Liang Xiang)
- Recommender system algorithm and architecture (Liang Xiang)
- How to build a recommender system? (Coen Stevens)
awesome-RecSys的更多相关文章
- Recommending branded products from social media -RecSys 2013-20160422
1.Information publication:RecSys 2013 author:zhengyong zhang 2.What 是对上一篇论文的拓展:利用社交媒体中用户信息 对用户购买的类别排 ...
- 近年Recsys论文
2015年~2017年SIGIR,SIGKDD,ICML三大会议的Recsys论文: [转载请注明出处:https://www.cnblogs.com/shenxiaolin/p/8321722.ht ...
- 【刷题】牛客网看到的鹅厂ML面筋-部分问题RecSys相关
昨天下午六点半的电话面试,其实我已经有了一个不错的实习offer ,不是特别想去腾讯了,没有太怎么准备,接的电话. 整个面试15分钟,开始就是自我介绍,接着问项目,和上一段百度实习经历.问题大致如下: ...
- RecSys Challenge 2015
[The Task] Given a sequence of click events performed by some user during a typical session in an e- ...
- Matrix Factorization in RecSys
矩阵分解在推荐系统中的应用. 参考链接:知乎. 传统SVD,Funk-SVD,Bias-SVD,SVD++. SVD奇异值分解及其意义. 漫谈奇异值分解.
- #研发中间件介绍#定时任务调度与管理JobCenter
郑昀 最后更新于2014/11/11 关键词:定时任务.调度.监控报警.Job.crontab.Java 本文档适用人员:研发员工 没有JobCenter时我们要面对的: 电商业务链条很长,业 ...
- 分布式系统(Distributed System)资料
这个资料关于分布式系统资料,作者写的太好了.拿过来以备用 网址:https://github.com/ty4z2008/Qix/blob/master/ds.md 希望转载的朋友,你可以不用联系我.但 ...
- #研发解决方案介绍#Recsys-Evaluate(推荐评测)
郑昀 基于刘金鑫文档 最后更新于2014/12/1 关键词:recsys.推荐评测.Evaluation of Recommender System.piwik.flume.kafka.storm.r ...
- TOP 10开源的推荐系统简介
最近这两年推荐系统特别火,本文搜集整理了一些比较好的开源推荐系统,即有轻量级的适用于做研究的SVDFeature.LibMF.LibFM等,也有重量级的适用于工业系统的 Mahout.Oryx.Eas ...
- 使用Apriori算法和FP-growth算法进行关联分析
系列文章:<机器学习实战>学习笔记 最近看了<机器学习实战>中的第11章(使用Apriori算法进行关联分析)和第12章(使用FP-growth算法来高效发现频繁项集).正如章 ...
随机推荐
- git bash 使用自带 curl 命令出现乱码解决方法
前言 使用过 git 的小伙伴应该都不会陌生,git 自带一个终端 git bash 类似于 window 自带的 dos git 官网下载:https://git-scm.com/dow ...
- 【问题记录】ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
一.问题描述 环境:MySQL 8.0 + Windows 由于密码错误或者其他原因导致无法连上MySQL服务,如下图: 二.解决方案 解决该问题的具体步骤如下: 1.关闭MySQL服务 以管理员权限 ...
- Sqlserver MERGE 的基础用法
版权声明:本文为CSDN博主「暮雪寒寒」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明.原文链接:https://blog.csdn.net/qq_2762801 ...
- 今天是JAVA诞生日
今天是JAVA诞生日,祝贺!!! 1995年5月23日,Sun公司在Sun world会议上正式发布Java和HotJava浏览器,Java诞生. https://baike.baidu.com/it ...
- ORACLE百分比分析函数RATIO_TO_REPORT() OVER()
有时候不用的指标的绝对值不能比,但是转转为百分比的形式就容易看出波动了,是数据分析的好用的一个分析函数 20:00:24 SYS@orcl> conn scott/tiger; Connecte ...
- Django框架(十一)-- 补充:inclusion_tag、defer、only、choice、事务、创建多对多的第三张表、mvc和mtv模式
一.inclusion_tag 1.作用 用于生成HTML片段,是数据由参数传入而变成动态 2.使用 # 1.app下新建一个模块,templatetags # 2.创建一个py文件(mytag.py ...
- windows 桌面文件变成.link解决方案
在注册表中右键删除下面这个注册表项: HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\FileExts\.ln ...
- 让天堂的归天堂,让尘土的归尘土——谈Linux的总线、设备、驱动模型
本文系转载,著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 作者: 宋宝华 来源: 微信公众号linux阅码场(id: linuxdev) 公元1951年5月15日的国会听证上, ...
- Xpath re bs4 等爬虫解析器的性能比较
xpath re bs4 等爬虫解析器的性能比较 本文原始地址:https://sitoi.cn/posts/23470.html 思路 测试网站地址:http://baijiahao.baidu.c ...
- AMD SATA Download (解决win10 磁盘占用100%问题)
需要下载的AMD SATA 驱动: 下载AMD SATA https://github.com/StoneIsDeveloper/UsefulTools/blob/master/AMD%20SATA/ ...