awesome-RecSys
https://github.com/jihoo-kim/awesome-RecSys?fbclid=IwAR1m6OebmqO9mfLV1ta4OTihQc9Phw8WNS4zdr5IeT1X1OLWQvLk0Wz45f4
awesome-RecSys
A curated list of awesome Recommender System - designed by Jihoo Kim
Table of Contents
1. Books
- Recommender Systems: The Textbook (2016, Charu Aggarwal)
- Recommender Systems Handbook 2nd Edition (2015, Francesco Ricci)
- Recommender Systems Handbook 1st Edition (2011, Francesco Ricci)
- Recommender Systems An Introduction (2011, Dietmar Jannach) slides
2. Conferences
- AAAI (AAAI Conference on Artificial Intelligence)
- CIKM (ACM International Conference on Information and Knowledge Management)
- CSCW (ACM Conference on Computer-Supported Cooperative Work & Social Computing)
- ICDM (IEEE International Conference on Data Mining)
- IJCAI (International Joint Conference on Artificial Intelligence)
- ICLR (International Conference on Learning Representations)
- ICML (International Conference on Machine Learning)
- IUI (International Conference on Intelligent User Interfaces)
- NIPS (Neural Information Processing Systems)
- RecSys (ACM Conference on Recommender Systems)
- SDM (SIAM International Conference on Data Mining)
- SIGIR (ACM SIGIR Conference on Research and development in information retrieval)
- SIGKDD (ACM SIGKDD International Conference on Knowledge discovery and data mining)
- SIGMOD (ACM SIGMOD International Conference on Management of Data)
- VLDB (International Conference on Very Large Databases)
- WSDM (ACM International Conference on Web Search and Data Mining)
- WWW (International World Wide Web Conferences)
3. Researchers
- George Karypis (University of Minnesota)
- Joseph A. Konstan (University of Minnesota)
- Philip S. Yu (University of Illinons at Chicago)
- Charu Aggarwal (IBM T. J. Watson Research Center)
- Martin Ester (Simon Fraser University)
- Paul Resnick (University of Michigan)
- Peter Brusilovsky (University of Pittsburgh)
- Bamshad Mobasher (DePaul University)
- Alexander Tuzhilin (New York University)
- Yehuda Koren (Google)
- Barry Smyth (University College Dublin)
- Lior Rokach (Ben-Gurion University of the Negev)
- Loren Terveen (University of Minnesota)
- Chris Volinsky (AT&T Labs)
- Ed H. Chi (Google AI)
- Laks V.S. Lakshmanan (University of British Columbia)
- Badrul Sarwar (LinkedIn)
- Francesco Ricci (Free University of Bozen-Bolzano)
- Robin Burke (University of Colorado, Boulder)
- Brent Smith (Amazon)
- Greg Linden (Amazon, Microsoft)
- Hao Ma (Facebook AI)
- Giovanni Semeraro (University of Bari Aldo Moro)
- Dietmar Jannach (University of Klagenfurt)
4. Papers
- Explainable Recommendation: A Survey and New Perspectives (2018, Yongfeng Zhang)
- Deep Learning based Recommender System: A Survey and New Perspectives (2018, Shuai Zhang)
- Collaborative Variational Autoencoder for Recommender Systems (2017, Xiaopeng Li)
- Neural Collaborative Filtering (2017, Xiangnan He)
- Deep Neural Networks for YouTube Recommendations (2016, Paul Covington)
- Wide & Deep Learning for Recommender Systems (2016, Heng-Tze Cheng)
- Collaborative Denoising Auto-Encoders for Top-N Recommender Systems (2016, Yao Wu)
- AutoRec: Autoencoders Meet Collaborative Filtering (2015, Suvash Sedhain)
- Collaborative Deep Learning for Recommender Systems (2015, Hao Wang)
- Collaborative Filtering beyond the User-Item Matrix A Survey of the State of the Art and Future Challenges (2014, Yue Shi)
- Deep content-based music recommendation (2013, Aaron van den Oord)
- Time-aware Point-of-interest Recommendation (2013, Quan Yuan)
- Location-based and Preference-Aware Recommendation Using Sparse Geo-Social Networking Data (2012, Jie Bao)
- Context-Aware Recommender Systems for Learning: A Survey and Future Challenges (2012, Katrien Verbert)
- Exploiting Geographical Influence for Collaborative Point-of-Interest Recommendation (2011, Mao Ye)
- Recommender Systems with Social Regularization (2011, Hao Ma)
- The YouTube Video Recommendation System (2010, James Davidson)
- Matrix Factorization Techniques for Recommender Systems (2009, Yehuda Koren)
- A Survey of Collaborative Filtering Techniques (2009, Xiaoyuan Su)
- Collaborative Filtering with Temporal Dynamics (2009, Yehuda Koren)
- Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model (2008, Yehuda Koren)
- Collaborative Filtering for Implicit Feedback Datasets (2008, Yifan Hu)
- SoRec: social recommendation using probabilistic matrix factorization (2008, Hao Ma)
- Flickr tag recommendation based on collective knowledge (2008, Borkur Sigurbjornsson)
- Restricted Boltzmann machines for collaborative filtering (2007, Ruslan Salakhutdinov)
- Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions(2005, Gediminas Adomavicius)
- Evaluating collaborative filtering recommender systems (2004, Jonatan L. Herlocker)
- Amazon.com Recommendations: Item-to-Item Collaborative Filtering (2003, Greg Linden)
- Content-boosted collaborative filtering for improved recommendations (2002, Prem Melville)
- Item-based collaborative filtering recommendation algorithms (2001, Badrul Sarwar)
- Explaining collaborative filtering recommendations (2000, Jonatan L. Herlocker)
- An algorithmic framework for performing collaborative filtering (1999, Jonathan L. Herlocker)
- Empirical analysis of predictive algorithms for collaborative filtering (1998, John S. Breese)
- Social information filtering: Algorithms for automating "word of mouth" (1995, Upendra Shardanand)
- GroupLens: an open architecture for collaborative filtering of netnews (1994, Paul Resnick)
- Using collaborative filtering to weave an information tapestry (1992, David Goldberg)
5. GitHub Repositories
- List_of_Recommender_Systems (Software, Open Source, Academic, Benchmarking, Applications, Books)
- Deep-Learning-for-Recommendation-Systems (Papers, Blogs, Worshops, Tutorials, Software)
- RecommenderSystem-Paper (Papers, Tools, Frameworks)
- RSPapers (Papers)
- awesome-RecSys-papers (Papers)
- DeepRec (Tensorflow Codes)
- RecQ (Tensorflow Codes)
- NeuRec (Tensorflow Codes)
- Surprise (Python Library)
- LightFM (Python Library)
- Spotlight (Python Library)
- python-recsys (Python Library)
- TensorRec (Python Library)
- CaseRecommender (Python Library)
- recommenders (Jupyter Notebook Tutorial)
6. Useful Sites
- WikiCFP - Recommender System (Call For Papers of Conferences, Workshops and Journals - Recommender System)
- Guide2Research - Top CS Conference (Top Computer Science Conferences)
- PapersWithCode - Recommender System (Papers with Code - Recommender System)
- Coursera - Recommender System (University of Minnesota - Joseph A. Konstan)
7. Youtube Videos
- RecSys Paper Presentation Videos (ACM RecSys)
- Building Recommender System with Machine Learning and AI (Youtube SEO)
- Machine Learning - FULL COURSE | Andrew Ng | Stanford University (Lecture 16.1 ~ Lecture 16.6)
- Mining Massive Datasets - FULL COURSE | Stanford University (Lecture 41 ~ Lecture 45)
- Text Retrieval and Search Engines - FULL COURSE | UIUC (Lecture 38 ~ Lecture 42)
- Recommendation Systems - Learn Python for Data Science #3 (Siraj Raval)
- How does Netflix recommend movies? Matrix Factorization (Luis Serrano)
8. SlideShare PPT
- Recommender system introduction (Liang Xiang)
- Recommender system algorithm and architecture (Liang Xiang)
- How to build a recommender system? (Coen Stevens)
awesome-RecSys的更多相关文章
- Recommending branded products from social media -RecSys 2013-20160422
1.Information publication:RecSys 2013 author:zhengyong zhang 2.What 是对上一篇论文的拓展:利用社交媒体中用户信息 对用户购买的类别排 ...
- 近年Recsys论文
2015年~2017年SIGIR,SIGKDD,ICML三大会议的Recsys论文: [转载请注明出处:https://www.cnblogs.com/shenxiaolin/p/8321722.ht ...
- 【刷题】牛客网看到的鹅厂ML面筋-部分问题RecSys相关
昨天下午六点半的电话面试,其实我已经有了一个不错的实习offer ,不是特别想去腾讯了,没有太怎么准备,接的电话. 整个面试15分钟,开始就是自我介绍,接着问项目,和上一段百度实习经历.问题大致如下: ...
- RecSys Challenge 2015
[The Task] Given a sequence of click events performed by some user during a typical session in an e- ...
- Matrix Factorization in RecSys
矩阵分解在推荐系统中的应用. 参考链接:知乎. 传统SVD,Funk-SVD,Bias-SVD,SVD++. SVD奇异值分解及其意义. 漫谈奇异值分解.
- #研发中间件介绍#定时任务调度与管理JobCenter
郑昀 最后更新于2014/11/11 关键词:定时任务.调度.监控报警.Job.crontab.Java 本文档适用人员:研发员工 没有JobCenter时我们要面对的: 电商业务链条很长,业 ...
- 分布式系统(Distributed System)资料
这个资料关于分布式系统资料,作者写的太好了.拿过来以备用 网址:https://github.com/ty4z2008/Qix/blob/master/ds.md 希望转载的朋友,你可以不用联系我.但 ...
- #研发解决方案介绍#Recsys-Evaluate(推荐评测)
郑昀 基于刘金鑫文档 最后更新于2014/12/1 关键词:recsys.推荐评测.Evaluation of Recommender System.piwik.flume.kafka.storm.r ...
- TOP 10开源的推荐系统简介
最近这两年推荐系统特别火,本文搜集整理了一些比较好的开源推荐系统,即有轻量级的适用于做研究的SVDFeature.LibMF.LibFM等,也有重量级的适用于工业系统的 Mahout.Oryx.Eas ...
- 使用Apriori算法和FP-growth算法进行关联分析
系列文章:<机器学习实战>学习笔记 最近看了<机器学习实战>中的第11章(使用Apriori算法进行关联分析)和第12章(使用FP-growth算法来高效发现频繁项集).正如章 ...
随机推荐
- 【生活现场】从打牌到map-reduce工作原理解析(转)
原文:http://www.sohu.com/a/287135829_818692 小史是一个非科班的程序员,虽然学的是电子专业,但是通过自己的努力成功通过了面试,现在要开始迎接新生活了. 对小史面试 ...
- mysqlbinlog恢复误删数据
概述 代码bug,在处理上传出现异常时执行了DELETE FROM t_resource WHERE resource_id = ? OR parent_id = ?因为OR条件导致用户的上传的所有数 ...
- WPF 高级篇 MVVM (MVVMlight) 依赖注入使用Messagebox
原文:WPF 高级篇 MVVM (MVVMlight) 依赖注入使用Messagebox MVVMlight 实现依赖注入 把弹框功能 和接口功能注入到各个插件中 使用依赖注入 先把所有的ViewMo ...
- 一、NodeJS入门——准备工作(1)——NodeJS的安装
目录 1.介绍 2.nodejs下载 3.nodejs安装 4.nodejs的简单实用 5.nodejs的经典入门:hello world 6.总结 1 介绍 这是一系列的内容主要是关于我在学习 ...
- 秋招打怪升级之路:十面阿里,终获offer!
本文转载自:https://gongfukangee.github.io/2019/09/06/Job/ 作者:G.Fukang 开源项目推荐: JavaGuide: Java学习+面试指南!Gith ...
- windows10风格 springboot vue.js html 跨域 前后分离 activiti 整合项目框架源码
官网:www.fhadmin.org 此项目为Springboot工作流版本 windows 风格,浏览器访问操作使用,非桌面应用程序. 1.代码生成器: [正反双向](单表.主表.明细表.树形表,快 ...
- echarts 更改tooltip提示框CSS样式
最近 做项目,用过echarts,发现tooltip提示z-index级别很高,想更改下,看了下文档:https://www.echartsjs.com/zh/option.html#tooltip. ...
- 使用gacutil把COM组件注册到全局缓存GAC中
我们在编写软件的时候,有时候需要调用COM组件,那就需要注册了,注册有两种,一种是使用regasm 在程序运行的时候注册,参考“pb调用C#编写的DLL类库“,不过受路径的限制.还有一种注册方式,使用 ...
- fastadmin CMS等系列插件安装不成功的问题
由于fastadmin开发者 没有做到权限优化问题,导致用户在linux服务器上lnmp环境下安装的fastadmin后台安装插件一直产生权限不足,安装不成功的问题, 再次给大家一个具体解决办法 对 ...
- Linux命令查找文件目录
座右铭:长风破浪会有时,直挂云帆济沧海. linux一般查看文件或者目录有几种方法. /查看文件类容--------cat/more/less/head/tail 只能查看文本型(txt) (1) ...