spark调优——Shuffle调优
在Spark任务运行过程中,如果shuffle的map端处理的数据量比较大,但是map端缓冲的大小是固定的,可能会出现map端缓冲数据频繁spill溢写到磁盘文件中的情况,使得性能非常低下,通过调节map端缓冲的大小,可以避免频繁的磁盘IO操作,进而提升Spark任务的整体性能。
map端缓冲的默认配置是32KB,如果每个task处理640KB的数据,那么会发生640/32 = 20次溢写,如果每个task处理64000KB的数据,机会发生64000/32=2000此溢写,这对于性能的影响是非常严重的。
map端缓冲的配置方法如代码清单2-7所示:
val conf = new SparkConf()
.set("spark.shuffle.file.buffer", "")
Shuffle调优二:调节reduce端拉取数据缓冲区大小
Spark Shuffle过程中,shuffle reduce task的buffer缓冲区大小决定了reduce task每次能够缓冲的数据量,也就是每次能够拉取的数据量,如果内存资源较为充足,适当增加拉取数据缓冲区的大小,可以减少拉取数据的次数,也就可以减少网络传输的次数,进而提升性能。
reduce端数据拉取缓冲区的大小可以通过spark.reducer.maxSizeInFlight参数进行设置,默认为48MB,该参数的设置方法如代码清单2-8所示:
val conf = new SparkConf()
.set("spark.reducer.maxSizeInFlight", "96")
Shuffle调优三:调节reduce端拉取数据重试次数
Spark Shuffle过程中,reduce task拉取属于自己的数据时,如果因为网络异常等原因导致失败会自动进行重试。对于那些包含了特别耗时的shuffle操作的作业,建议增加重试最大次数(比如60次),以避免由于JVM的full gc或者网络不稳定等因素导致的数据拉取失败。在实践中发现,对于针对超大数据量(数十亿~上百亿)的shuffle过程,调节该参数可以大幅度提升稳定性。
reduce端拉取数据重试次数可以通过spark.shuffle.io.maxRetries参数进行设置,该参数就代表了可以重试的最大次数。如果在指定次数之内拉取还是没有成功,就可能会导致作业执行失败,默认为3,该参数的设置方法如代码清单2-9所示:
val conf = new SparkConf() .set("spark.shuffle.io.maxRetries", "")
Shuffle调优四:调节reduce端拉取数据等待间隔
Spark Shuffle过程中,reduce task拉取属于自己的数据时,如果因为网络异常等原因导致失败会自动进行重试,在一次失败后,会等待一定的时间间隔再进行重试,可以通过加大间隔时长(比如60s),以增加shuffle操作的稳定性。
reduce端拉取数据等待间隔可以通过spark.shuffle.io.retryWait参数进行设置,默认值为5s,该参数的设置方法如代码清单2-10所示:
val conf = new SparkConf()
.set("spark.shuffle.io.retryWait", "60s")
Shuffle调优五:调节SortShuffle排序操作阈值
对于SortShuffleManager,如果shuffle reduce task的数量小于某一阈值则shuffle write过程中不会进行排序操作,而是直接按照未经优化的HashShuffleManager的方式去写数据,但是最后会将每个task产生的所有临时磁盘文件都合并成一个文件,并会创建单独的索引文件。
当你使用SortShuffleManager时,如果的确不需要排序操作,那么建议将这个参数调大一些,大于shuffle read task的数量,那么此时map-side就不会进行排序了,减少了排序的性能开销,但是这种方式下,依然会产生大量的磁盘文件,因此shuffle write性能有待提高。
SortShuffleManager排序操作阈值的设置可以通过spark.shuffle.sort. bypassMergeThreshold这一参数进行设置,默认值为200,该参数的设置方法如代码清单2-11所示:
val conf = new SparkConf()
.set("spark.shuffle.sort.bypassMergeThreshold", "")
spark调优——Shuffle调优的更多相关文章
- Spark性能调优之Shuffle调优
Spark性能调优之Shuffle调优 • Spark底层shuffle的传输方式是使用netty传输,netty在进行网络传输的过程会申请堆外内存(netty是零拷贝),所以使用了堆外内存. ...
- Spark学习之路 (十)SparkCore的调优之Shuffle调优
摘抄自https://tech.meituan.com/spark-tuning-pro.html 一.概述 大多数Spark作业的性能主要就是消耗在了shuffle环节,因为该环节包含了大量的磁盘I ...
- spark性能调优(二) 彻底解密spark的Hash Shuffle
装载:http://www.cnblogs.com/jcchoiling/p/6431969.html 引言 Spark HashShuffle 是它以前的版本,现在1.6x 版本默应是 Sort-B ...
- Spark(九)Spark之Shuffle调优
一.概述 大多数Spark作业的性能主要就是消耗在了shuffle环节,因为该环节包含了大量的磁盘IO.序列化.网络数据传输等操作.因此,如果要让作业的性能更上一层楼,就有必要对shuffle过程进行 ...
- Spark性能优化--数据倾斜调优与shuffle调优
一.数据倾斜发生的原理 原理:在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或join等操作.此时如果某个key对应的数据量特 ...
- Spark性能优化:shuffle调优
调优概述 大多数Spark作业的性能主要就是消耗在了shuffle环节,因为该环节包含了大量的磁盘IO.序列化.网络数据传输等操作.因此,如果要让作业的性能更上一层楼,就有必要对shuffle过程进行 ...
- Spark学习之路 (十)SparkCore的调优之Shuffle调优[转]
概述 大多数Spark作业的性能主要就是消耗在了shuffle环节,因为该环节包含了大量的磁盘IO.序列化.网络数据传输等操作.因此,如果要让作业的性能更上一层楼,就有必要对shuffle过程进行调优 ...
- Spark(十)Spark之数据倾斜调优
一 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性能会比期望差很多.数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作 ...
- shuffle调优
目录 一.概述 二.shuffle的定义 三.ShuffleMananger发展概述 四.HashShuffleManager的运行原理 4.1 未经优化的HashShuffleManager 4.2 ...
随机推荐
- Effective.Java第45-55条(规范相关)
45. 明智谨慎地使用Stream 46. 优先考虑流中无副作用的函数 47. 优先使用Collection而不是Stream作为方法的返回类型 48. 谨慎使用流并行 49. 检查参数有效 ...
- git new
Quick setup — if you’ve done this kind of thing before Set up in Desktop or HTTPSSSH Get started by ...
- Java 在 Word 文档中使用新文本替换指定文本
创作一份文案,经常会高频率地使用某些词汇,如地名.人名.人物职位等,若表述有误,就需要整体撤换.文本将介绍如何使用Spire.Doc for Java,在Java程序中对Word文档中的指定文本进行替 ...
- Golang读取并修改非主流配置文件
今天工作中碰到的问题,要求修改此配置文件,没看出来是什么格式,用了下面的思路: mysql { # If any of the files below are set, TLS encryption ...
- docker搭建etcd集群环境
其实关于集群网上说的方案已经很多了,尤其是官网,只是这里我个人只有一个虚拟机,在开发环境下建议用docker-compose来搭建etcd集群. 1.拉取etcd镜像 docker pull quay ...
- 百度前端技术学院task13源代码
突然发现只看书不练习也是不行的,这么简单的我竟然都不会写了. 要注意innerHTML,innerText和outText之间的异同. 同时也要会使用DOM2的添加事件,移除事件等 <!DOCT ...
- 『数 变进制状压dp』
数 Description 给定正整数n,m,问有多少个正整数满足: (1) 不含前导0: (2) 是m的倍数: (3) 可以通过重排列各个数位得到n. \(n\leq10^{20},m\leq100 ...
- spring Aop切面中的@Before @Around等执行顺序与请求参数统一解码
1.背景 在实际开发中,我可能会对请求接口做统一日志输出,或者统一参数解析,验签,统一响应加密等,通常会用到aop,实际案例如下 2.代码 package com.qianxingniwo.log; ...
- VS 安装resharper 后 无法进行UnitTest
Vs安装 Resharper后,无法进行单元测试,发现报错提示信息如下: ignored test-case is missing. rebuild the project and try again ...
- c#中泛型
整理一下昨天学习的泛型,有不对的地方欢迎指正: 泛型类 定义一个类,这个类中某些字段的类型不确定,这些类型可以在构造类时确定下来 2.泛型方法 泛型方法就是定义一个方法,这个方法的参数类型可以是不确定 ...