spark调优——Shuffle调优
在Spark任务运行过程中,如果shuffle的map端处理的数据量比较大,但是map端缓冲的大小是固定的,可能会出现map端缓冲数据频繁spill溢写到磁盘文件中的情况,使得性能非常低下,通过调节map端缓冲的大小,可以避免频繁的磁盘IO操作,进而提升Spark任务的整体性能。
map端缓冲的默认配置是32KB,如果每个task处理640KB的数据,那么会发生640/32 = 20次溢写,如果每个task处理64000KB的数据,机会发生64000/32=2000此溢写,这对于性能的影响是非常严重的。
map端缓冲的配置方法如代码清单2-7所示:
val conf = new SparkConf()
.set("spark.shuffle.file.buffer", "")
Shuffle调优二:调节reduce端拉取数据缓冲区大小
Spark Shuffle过程中,shuffle reduce task的buffer缓冲区大小决定了reduce task每次能够缓冲的数据量,也就是每次能够拉取的数据量,如果内存资源较为充足,适当增加拉取数据缓冲区的大小,可以减少拉取数据的次数,也就可以减少网络传输的次数,进而提升性能。
reduce端数据拉取缓冲区的大小可以通过spark.reducer.maxSizeInFlight参数进行设置,默认为48MB,该参数的设置方法如代码清单2-8所示:
val conf = new SparkConf()
.set("spark.reducer.maxSizeInFlight", "96")
Shuffle调优三:调节reduce端拉取数据重试次数
Spark Shuffle过程中,reduce task拉取属于自己的数据时,如果因为网络异常等原因导致失败会自动进行重试。对于那些包含了特别耗时的shuffle操作的作业,建议增加重试最大次数(比如60次),以避免由于JVM的full gc或者网络不稳定等因素导致的数据拉取失败。在实践中发现,对于针对超大数据量(数十亿~上百亿)的shuffle过程,调节该参数可以大幅度提升稳定性。
reduce端拉取数据重试次数可以通过spark.shuffle.io.maxRetries参数进行设置,该参数就代表了可以重试的最大次数。如果在指定次数之内拉取还是没有成功,就可能会导致作业执行失败,默认为3,该参数的设置方法如代码清单2-9所示:
val conf = new SparkConf() .set("spark.shuffle.io.maxRetries", "")
Shuffle调优四:调节reduce端拉取数据等待间隔
Spark Shuffle过程中,reduce task拉取属于自己的数据时,如果因为网络异常等原因导致失败会自动进行重试,在一次失败后,会等待一定的时间间隔再进行重试,可以通过加大间隔时长(比如60s),以增加shuffle操作的稳定性。
reduce端拉取数据等待间隔可以通过spark.shuffle.io.retryWait参数进行设置,默认值为5s,该参数的设置方法如代码清单2-10所示:
val conf = new SparkConf()
.set("spark.shuffle.io.retryWait", "60s")
Shuffle调优五:调节SortShuffle排序操作阈值
对于SortShuffleManager,如果shuffle reduce task的数量小于某一阈值则shuffle write过程中不会进行排序操作,而是直接按照未经优化的HashShuffleManager的方式去写数据,但是最后会将每个task产生的所有临时磁盘文件都合并成一个文件,并会创建单独的索引文件。
当你使用SortShuffleManager时,如果的确不需要排序操作,那么建议将这个参数调大一些,大于shuffle read task的数量,那么此时map-side就不会进行排序了,减少了排序的性能开销,但是这种方式下,依然会产生大量的磁盘文件,因此shuffle write性能有待提高。
SortShuffleManager排序操作阈值的设置可以通过spark.shuffle.sort. bypassMergeThreshold这一参数进行设置,默认值为200,该参数的设置方法如代码清单2-11所示:
val conf = new SparkConf()
.set("spark.shuffle.sort.bypassMergeThreshold", "")
spark调优——Shuffle调优的更多相关文章
- Spark性能调优之Shuffle调优
Spark性能调优之Shuffle调优 • Spark底层shuffle的传输方式是使用netty传输,netty在进行网络传输的过程会申请堆外内存(netty是零拷贝),所以使用了堆外内存. ...
- Spark学习之路 (十)SparkCore的调优之Shuffle调优
摘抄自https://tech.meituan.com/spark-tuning-pro.html 一.概述 大多数Spark作业的性能主要就是消耗在了shuffle环节,因为该环节包含了大量的磁盘I ...
- spark性能调优(二) 彻底解密spark的Hash Shuffle
装载:http://www.cnblogs.com/jcchoiling/p/6431969.html 引言 Spark HashShuffle 是它以前的版本,现在1.6x 版本默应是 Sort-B ...
- Spark(九)Spark之Shuffle调优
一.概述 大多数Spark作业的性能主要就是消耗在了shuffle环节,因为该环节包含了大量的磁盘IO.序列化.网络数据传输等操作.因此,如果要让作业的性能更上一层楼,就有必要对shuffle过程进行 ...
- Spark性能优化--数据倾斜调优与shuffle调优
一.数据倾斜发生的原理 原理:在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或join等操作.此时如果某个key对应的数据量特 ...
- Spark性能优化:shuffle调优
调优概述 大多数Spark作业的性能主要就是消耗在了shuffle环节,因为该环节包含了大量的磁盘IO.序列化.网络数据传输等操作.因此,如果要让作业的性能更上一层楼,就有必要对shuffle过程进行 ...
- Spark学习之路 (十)SparkCore的调优之Shuffle调优[转]
概述 大多数Spark作业的性能主要就是消耗在了shuffle环节,因为该环节包含了大量的磁盘IO.序列化.网络数据传输等操作.因此,如果要让作业的性能更上一层楼,就有必要对shuffle过程进行调优 ...
- Spark(十)Spark之数据倾斜调优
一 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性能会比期望差很多.数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作 ...
- shuffle调优
目录 一.概述 二.shuffle的定义 三.ShuffleMananger发展概述 四.HashShuffleManager的运行原理 4.1 未经优化的HashShuffleManager 4.2 ...
随机推荐
- 【题解】选数字 [51nod1354]
[题解]选数字 [51nod1354] 传送门:选数字 \([51nod1354]\) [题目描述] 共 \(T\) 组测试点,每一组给定一个长度为 \(n\) 的序列和一个整数 \(K\),找出有多 ...
- FRP represents an intersection of two programming paradigms.
FRP represents an intersection of two programming paradigms. Functional programming Functional progr ...
- Linux学习笔记之Linux系统的swap分区
0x00 什么是swap分区 Swap分区在系统的物理内存不够用的时候,把物理内存中的一部分空间释放出来,以供当前运行的程序使用.那些被释放的空间可能来自一些很长时间没有什么操作的程序,这些被释放的空 ...
- .Net Core WebAPI开启静态页,设置主页
1.使用场景 默认创建的.Net Core WebAPI应用在运行时是没有页面显示的,效果如下: 那么,如果想要给API设置一个主页,应该怎么做呢?这就需要用到本文提供的方法. 2.设置方法 (1)首 ...
- ASP.NET Core 静态文件
静态文件(HTML,CSS,图片和Javascript之类的资源)会被ASP.NET Core应用直接提供给客户端. 静态文件通常位于网站根目录(web root) <content-root& ...
- Python进阶----pymysql模块的使用,单表查询
Python进阶----pymysql模块的使用,单表查询 一丶使用pymysql 1.下载pymysql包: pip3 install pymysql 2.编写代码 ...
- 使用 Go 语言徒手撸一个负载均衡器
负载均衡器在 Web 架构中扮演着非常重要的角色,被用于为多个后端分发流量负载,提升服务的伸缩性.负载均衡器后面配置了多个服务,在某个服务发生故障时,负载均衡器可以很快地选择另一个可用的服务,所以整体 ...
- SpringMVC中@RequestParam注解作用
1.不使用@RequestParam 请求参数名必须和形参名称一样 2.使用@RequestParam 请求参数名必须和@RequestParam value属性值一样 请求参数名不必和 ...
- Vue第一天
什么是 Vue.js? Vue.js是前端的主流框架之一,与 Angular.js.React.js一起,并称为前端三大主流框架 Vue.js是一套构建用户界面的框架,只关注视图层,它不仅易上手,还便 ...
- 关于ionic2在IOS上点击延迟的问题
正常的点击事件, 不知道 为什么 ,在IOS上明显会延迟几百毫秒.. 加上tappable属性就可以解决了 <div tappable (click)="doClick()" ...