spark调优——Shuffle调优
在Spark任务运行过程中,如果shuffle的map端处理的数据量比较大,但是map端缓冲的大小是固定的,可能会出现map端缓冲数据频繁spill溢写到磁盘文件中的情况,使得性能非常低下,通过调节map端缓冲的大小,可以避免频繁的磁盘IO操作,进而提升Spark任务的整体性能。
map端缓冲的默认配置是32KB,如果每个task处理640KB的数据,那么会发生640/32 = 20次溢写,如果每个task处理64000KB的数据,机会发生64000/32=2000此溢写,这对于性能的影响是非常严重的。
map端缓冲的配置方法如代码清单2-7所示:
val conf = new SparkConf()
.set("spark.shuffle.file.buffer", "")
Shuffle调优二:调节reduce端拉取数据缓冲区大小
Spark Shuffle过程中,shuffle reduce task的buffer缓冲区大小决定了reduce task每次能够缓冲的数据量,也就是每次能够拉取的数据量,如果内存资源较为充足,适当增加拉取数据缓冲区的大小,可以减少拉取数据的次数,也就可以减少网络传输的次数,进而提升性能。
reduce端数据拉取缓冲区的大小可以通过spark.reducer.maxSizeInFlight参数进行设置,默认为48MB,该参数的设置方法如代码清单2-8所示:
val conf = new SparkConf()
.set("spark.reducer.maxSizeInFlight", "96")
Shuffle调优三:调节reduce端拉取数据重试次数
Spark Shuffle过程中,reduce task拉取属于自己的数据时,如果因为网络异常等原因导致失败会自动进行重试。对于那些包含了特别耗时的shuffle操作的作业,建议增加重试最大次数(比如60次),以避免由于JVM的full gc或者网络不稳定等因素导致的数据拉取失败。在实践中发现,对于针对超大数据量(数十亿~上百亿)的shuffle过程,调节该参数可以大幅度提升稳定性。
reduce端拉取数据重试次数可以通过spark.shuffle.io.maxRetries参数进行设置,该参数就代表了可以重试的最大次数。如果在指定次数之内拉取还是没有成功,就可能会导致作业执行失败,默认为3,该参数的设置方法如代码清单2-9所示:
val conf = new SparkConf()
.set("spark.shuffle.io.maxRetries", "")
Shuffle调优四:调节reduce端拉取数据等待间隔
Spark Shuffle过程中,reduce task拉取属于自己的数据时,如果因为网络异常等原因导致失败会自动进行重试,在一次失败后,会等待一定的时间间隔再进行重试,可以通过加大间隔时长(比如60s),以增加shuffle操作的稳定性。
reduce端拉取数据等待间隔可以通过spark.shuffle.io.retryWait参数进行设置,默认值为5s,该参数的设置方法如代码清单2-10所示:
val conf = new SparkConf()
.set("spark.shuffle.io.retryWait", "60s")
Shuffle调优五:调节SortShuffle排序操作阈值
对于SortShuffleManager,如果shuffle reduce task的数量小于某一阈值则shuffle write过程中不会进行排序操作,而是直接按照未经优化的HashShuffleManager的方式去写数据,但是最后会将每个task产生的所有临时磁盘文件都合并成一个文件,并会创建单独的索引文件。
当你使用SortShuffleManager时,如果的确不需要排序操作,那么建议将这个参数调大一些,大于shuffle read task的数量,那么此时map-side就不会进行排序了,减少了排序的性能开销,但是这种方式下,依然会产生大量的磁盘文件,因此shuffle write性能有待提高。
SortShuffleManager排序操作阈值的设置可以通过spark.shuffle.sort. bypassMergeThreshold这一参数进行设置,默认值为200,该参数的设置方法如代码清单2-11所示:
val conf = new SparkConf()
.set("spark.shuffle.sort.bypassMergeThreshold", "")
spark调优——Shuffle调优的更多相关文章
- Spark性能调优之Shuffle调优
Spark性能调优之Shuffle调优 • Spark底层shuffle的传输方式是使用netty传输,netty在进行网络传输的过程会申请堆外内存(netty是零拷贝),所以使用了堆外内存. ...
- Spark学习之路 (十)SparkCore的调优之Shuffle调优
摘抄自https://tech.meituan.com/spark-tuning-pro.html 一.概述 大多数Spark作业的性能主要就是消耗在了shuffle环节,因为该环节包含了大量的磁盘I ...
- spark性能调优(二) 彻底解密spark的Hash Shuffle
装载:http://www.cnblogs.com/jcchoiling/p/6431969.html 引言 Spark HashShuffle 是它以前的版本,现在1.6x 版本默应是 Sort-B ...
- Spark(九)Spark之Shuffle调优
一.概述 大多数Spark作业的性能主要就是消耗在了shuffle环节,因为该环节包含了大量的磁盘IO.序列化.网络数据传输等操作.因此,如果要让作业的性能更上一层楼,就有必要对shuffle过程进行 ...
- Spark性能优化--数据倾斜调优与shuffle调优
一.数据倾斜发生的原理 原理:在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或join等操作.此时如果某个key对应的数据量特 ...
- Spark性能优化:shuffle调优
调优概述 大多数Spark作业的性能主要就是消耗在了shuffle环节,因为该环节包含了大量的磁盘IO.序列化.网络数据传输等操作.因此,如果要让作业的性能更上一层楼,就有必要对shuffle过程进行 ...
- Spark学习之路 (十)SparkCore的调优之Shuffle调优[转]
概述 大多数Spark作业的性能主要就是消耗在了shuffle环节,因为该环节包含了大量的磁盘IO.序列化.网络数据传输等操作.因此,如果要让作业的性能更上一层楼,就有必要对shuffle过程进行调优 ...
- Spark(十)Spark之数据倾斜调优
一 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性能会比期望差很多.数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作 ...
- shuffle调优
目录 一.概述 二.shuffle的定义 三.ShuffleMananger发展概述 四.HashShuffleManager的运行原理 4.1 未经优化的HashShuffleManager 4.2 ...
随机推荐
- 【C++】C++中基类的析构函数为什么要用virtual虚析构函数?
正面回答: 当基类的析构函数不是虚函数,并且基类指针指向一个派生类对象,然后通过基类指针来删除这个派生类对象时,如果基类的析构函数不是虚析构函数,那么派生类的析构函数就不会被调用,从而产生内存泄漏 # ...
- 【转帖】普通程序员如何转向AI方向
普通程序员如何转向AI方向 https://www.cnblogs.com/subconscious/p/6240151.html 眼下,人工智能已经成为越来越火的一个方向.普通程序员,如何转向人工智 ...
- zk脑裂
一.为什么zookeeper要部署基数台服务器?二.zookeeper脑裂(Split-Brain)问题2.1.什么是脑裂?2.2.什么原因导致的?2.2.zookeeper是如何解决的?一.为什么z ...
- golang socket与Linux socket比较分析
在posix标准推出后,socket在各大主流OS平台上都得到了很好的支持.而Golang是自带runtime的跨平台编程语言,Go中提供给开发者的socket API是建立在操作系统原生socket ...
- 微信小程序:防止多次点击跳转(函数节流)
场景 在使用小程序的时候会出现这样一种情况:当网络条件差或卡顿的情况下,使用者会认为点击无效而进行多次点击,最后出现多次跳转页面的情况,就像下图(快速点击了两次): 解决办法 然后从 轻松理解JS函数 ...
- bootstrap table--面相配置、hook、适配的表格框架
bootstrap table--面相配置.hook.适配的表格框架
- Debian忘记密码重置
前一阵子因为特殊原因我把一个网站的VPS服务器关闭了,结果竟把SSH密码忘了,也没有使用SSH密钥,因为上面还有网站文件不能选择重装,只能尝试在面板重置,但是面板返回结果一直是404我无法获得重置的密 ...
- 2019 翔通动漫java面试笔试题 (含面试题解析)
本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.翔通动漫等公司offer,岗位是Java后端开发,因为发展原因最终选择去了翔通动漫,入职一年时间了,也成为了面 ...
- mybatis关联映射一对多
实际项目中也存在很多的一对多的情况,下面看看这个简单的例子 table.sql CREATE TABLE tb_clazz( id INT PRIMARY KEY AUTO_INCREMENT, CO ...
- python后端链接数据库-----MySQLdb
连接数据库之前请先确认好以下事宜: 1.已经建议好相应的数据库 2.在数据库中已经建立了相应的表 3.已经安装了MySQldb模块 示例: import MySQLdb # 打开数据库连接 db = ...