pytorch对模型参数初始化
1.使用apply()
举例说明:
- Encoder :设计的编码其模型
- weights_init(): 用来初始化模型
- model.apply():实现初始化
# coding:utf-
from torch import nn def weights_init(mod):
"""设计初始化函数"""
classname=mod.__class__.__name__
# 返回传入的module类型
print(classname)
if classname.find('Conv')!= -: #这里的Conv和BatchNnorm是torc.nn里的形式
mod.weight.data.normal_(0.0,0.02)
elif classname.find('BatchNorm')!= -:
mod.weight.data.normal_(1.0,0.02) #bn层里初始化γ,服从(,0.02)的正态分布
mod.bias.data.fill_() #bn层里初始化β,默认为0 class Encoder(nn.Module):
def __init__(self, input_size, input_channels, base_channnes, z_channels): super(Encoder, self).__init__()
# input_size必须为16的倍数
assert input_size % == , "input_size has to be a multiple of 16" models = nn.Sequential()
models.add_module('Conv2_{0}_{1}'.format(input_channels, base_channnes), nn.Conv2d(input_channels, base_channnes, , , , bias=False))
models.add_module('LeakyReLU_{0}'.format(base_channnes), nn.LeakyReLU(0.2, inplace=True))
# 此时图片大小已经下降一倍
temp_size = input_size/ # 直到特征图高宽为4
# 目的是保证无论输入什么大小的图片,经过这几层后特征图大小为4*
while temp_size > :
models.add_module('Conv2_{0}_{1}'.format(base_channnes, base_channnes*), nn.Conv2d(base_channnes, base_channnes*, , , , bias=False))
models.add_module('BatchNorm2d_{0}'.format(base_channnes*), nn.BatchNorm2d(base_channnes*))
models.add_module('LeakyReLU_{0}'.format(base_channnes*), nn.LeakyReLU(0.2, inplace=True))
base_channnes *=
temp_size /= # 特征图高宽为4后面则添加上最后一层
# 让输出为1*
models.add_module('Conv2_{0}_{1}'.format(base_channnes, z_channels), nn.Conv2d(base_channnes, z_channels, , , , bias=False))
self.models = models def forward(self, x):
x = self.models(x)
return x if __name__ == '__main__':
e = Encoder(, , , )
# 对e模型中的每个module和其本身都会调用一次weights_init函数,mod参数的值即这些module
e.apply(weights_init)
# 根据名字来查看参数
for name, param in e.named_parameters():
print(name)
# 举个例子看看是否按照设计进行初始化
# 可见BatchNorm2d的weight是正态分布形的参数,bias参数都是0
if name == 'models.BatchNorm2d_128.weight' or name == 'models.BatchNorm2d_128.bias':
print(param)
返回:
# 返回的是依次传入初始化函数的module
Conv2d
LeakyReLU
Conv2d
BatchNorm2d
LeakyReLU
Conv2d
BatchNorm2d
LeakyReLU
Conv2d
BatchNorm2d
LeakyReLU
Conv2d
BatchNorm2d
LeakyReLU
Conv2d
BatchNorm2d
LeakyReLU
Conv2d
Sequential
Encoder # 输出name的格式,并根据条件打印出BatchNorm2d-128的两个参数
models.Conv2_3_64.weight
models.Conv2_64_128.weight
models.BatchNorm2d_128.weight
Parameter containing:
tensor([1.0074, 0.9865, 1.0188, 1.0015, 0.9757, 1.0393, 0.9813, 1.0135, 1.0227,
0.9903, 1.0490, 1.0102, 0.9920, 0.9878, 1.0060, 0.9944, 0.9993, 1.0139,
0.9987, 0.9888, 0.9816, 0.9951, 1.0017, 0.9818, 0.9922, 0.9627, 0.9883,
0.9985, 0.9759, 0.9962, 1.0183, 1.0199, 1.0033, 1.0475, 0.9586, 0.9916,
1.0354, 0.9956, 0.9998, 1.0022, 1.0307, 1.0141, 1.0062, 1.0082, 1.0111,
0.9683, 1.0372, 0.9967, 1.0157, 1.0299, 1.0352, 0.9961, 0.9901, 1.0274,
0.9727, 1.0042, 1.0278, 1.0134, 0.9648, 0.9887, 1.0225, 1.0175, 1.0002,
0.9988, 0.9839, 1.0023, 0.9913, 0.9657, 1.0404, 1.0197, 1.0221, 0.9925,
0.9962, 0.9910, 0.9865, 1.0342, 1.0156, 0.9688, 1.0015, 1.0055, 0.9751,
1.0304, 1.0132, 0.9778, 0.9900, 1.0092, 0.9745, 1.0067, 1.0077, 1.0057,
1.0117, 0.9850, 1.0309, 0.9918, 0.9945, 0.9935, 0.9746, 1.0366, 0.9913,
0.9564, 1.0071, 1.0370, 0.9774, 1.0126, 1.0040, 0.9946, 1.0080, 1.0126,
0.9761, 0.9811, 0.9974, 0.9992, 1.0338, 1.0104, 0.9931, 1.0204, 1.0230,
1.0255, 0.9969, 1.0079, 1.0127, 0.9816, 1.0132, 0.9884, 0.9691, 0.9922,
1.0166, 0.9980], requires_grad=True)
models.BatchNorm2d_128.bias
Parameter containing:
tensor([., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., .,
., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., .,
., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., .,
., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., .,
., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., ., .,
., ., ., ., ., ., ., .], requires_grad=True)
models.Conv2_128_256.weight
models.BatchNorm2d_256.weight
models.BatchNorm2d_256.bias
models.Conv2_256_512.weight
models.BatchNorm2d_512.weight
models.BatchNorm2d_512.bias
models.Conv2_512_1024.weight
models.BatchNorm2d_1024.weight
models.BatchNorm2d_1024.bias
models.Conv2_1024_2048.weight
models.BatchNorm2d_2048.weight
models.BatchNorm2d_2048.bias
models.Conv2_2048_100.weight
2.直接在定义网络时定义
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F class Discriminator(nn.Module):
"""
6层全连接层
"""
def __init__(self, z_dim):
super(Discriminator, self).__init__()
self.z_dim = z_dim
self.net = nn.Sequential(
nn.Linear(z_dim, ),
nn.LeakyReLU(0.2, True),
nn.Linear(, ),
nn.LeakyReLU(0.2, True),
nn.Linear(, ),
nn.LeakyReLU(0.2, True),
nn.Linear(, ),
nn.LeakyReLU(0.2, True),
nn.Linear(, ),
nn.LeakyReLU(0.2, True),
nn.Linear(, ),
)
self.weight_init() # 参数初始化
def weight_init(self, mode='normal'):
if mode == 'kaiming':
initializer = kaiming_init
elif mode == 'normal':
initializer = normal_init for block in self._modules:
for m in self._modules[block]:
initializer(m) def forward(self, z):
return self.net(z).squeeze() def kaiming_init(m):
if isinstance(m, (nn.Linear, nn.Conv2d)):
init.kaiming_normal_(m.weight)
if m.bias is not None:
m.bias.data.fill_()
elif isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d)):
m.weight.data.fill_()
if m.bias is not None:
m.bias.data.fill_() def normal_init(m):
if isinstance(m, (nn.Linear, nn.Conv2d)):
init.normal_(m.weight, , 0.02)
if m.bias is not None:
m.bias.data.fill_()
elif isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d)):
m.weight.data.fill_()
if m.bias is not None:
m.bias.data.fill_()
然后调用即可
pytorch对模型参数初始化的更多相关文章
- PyTorch保存模型与加载模型+Finetune预训练模型使用
Pytorch 保存模型与加载模型 PyTorch之保存加载模型 参数初始化参 数的初始化其实就是对参数赋值.而我们需要学习的参数其实都是Variable,它其实是对Tensor的封装,同时提供了da ...
- PyTorch模型读写、参数初始化、Finetune
使用了一段时间PyTorch,感觉爱不释手(0-0),听说现在已经有C++接口.在应用过程中不可避免需要使用Finetune/参数初始化/模型加载等. 模型保存/加载 1.所有模型参数 训练过程中,有 ...
- Pytorch基础(6)----参数初始化
一.使用Numpy初始化:[直接对Tensor操作] 对Sequential模型的参数进行修改: import numpy as np import torch from torch import n ...
- pytorch和tensorflow的爱恨情仇之参数初始化
pytorch和tensorflow的爱恨情仇之基本数据类型 pytorch和tensorflow的爱恨情仇之张量 pytorch和tensorflow的爱恨情仇之定义可训练的参数 pytorch版本 ...
- PyTorch常用参数初始化方法详解
1. 均匀分布 torch.nn.init.uniform_(tensor, a=0, b=1) 从均匀分布U(a, b)中采样,初始化张量. 参数: tensor - 需要填充的张量 a - 均匀分 ...
- 【转载】 pytorch自定义网络结构不进行参数初始化会怎样?
原文地址: https://blog.csdn.net/u011668104/article/details/81670544 ------------------------------------ ...
- ubuntu之路——day15.1 只用python的numpy在底层检验参数初始化对模型的影响
首先感谢这位博主整理的Andrew Ng的deeplearning.ai的相关作业:https://blog.csdn.net/u013733326/article/details/79827273 ...
- [深度学习] Pytorch(三)—— 多/单GPU、CPU,训练保存、加载模型参数问题
[深度学习] Pytorch(三)-- 多/单GPU.CPU,训练保存.加载预测模型问题 上一篇实践学习中,遇到了在多/单个GPU.GPU与CPU的不同环境下训练保存.加载使用使用模型的问题,如果保存 ...
- pytorch保存模型等相关参数,利用torch.save(),以及读取保存之后的文件
本文分为两部分,第一部分讲如何保存模型参数,优化器参数等等,第二部分则讲如何读取. 假设网络为model = Net(), optimizer = optim.Adam(model.parameter ...
随机推荐
- STM32移植USB驱动总结
https://blog.csdn.net/stm32_newlearner/article/details/88095944 stm32 移植usb驱动开发 单片机 STM32单片机和51单片机 ...
- php5.6 的mcrypt_encrypt 函数可以和5.5.9的行为一样
php5.5.9 -----------------------$output = "test php !!" $key = "abcd123456789"; ...
- 一 创建一个springboot项目之(微信点餐系统的设计与开发)
第一步:收到项目需求,进行数据库表的设计. 1.角色的划分: 卖家: 订单,类目 买家: 商品列表 2.功能模块的划分: 商品:商品列表 订单: 订单创建,订单查询,订单取消 类目:基于管理的功 ...
- 《你说对就队》第八次团队作业:Alpha冲刺
<你说对就队>第八次团队作业:Alpha冲刺 项目 内容 这个作业属于哪个课程 [教师博客主页链接] 这个作业的要求在哪里 [作业链接地址] 团队名称 <你说对就队> 作业学习 ...
- 使用C#的HttpWebRequest模拟登陆访问人人网(转)
无论使用任何语言做模拟登陆或者抓取访问页面,无外乎以下思路:第一 启用一个web访问会话方法或者实例化一个web访问类,如.net中的HttpWebRequest:第二 模拟POST或者GET方式提交 ...
- windows nginx 目录配置
http { server { listen 80; server_name www.test.com; location / { root E:/data/www; index index.html ...
- LightOJ - 1067 - Combinations(组合数)
链接: https://vjudge.net/problem/LightOJ-1067 题意: Given n different objects, you want to take k of the ...
- Post Office Problem
Description There are n houses on a line. Given an array A and A[i] represents the position of i-th ...
- django 第三天 视图
今日内容 一.url路由分发之include 项目文件夹下的urls.py文件中的url写法: from django.conf.urls import url,include from django ...
- BZOJ 4332: JSOI2012 分零食 FFT+分治
好题好题~ #include <bits/stdc++.h> #define N 50020 #define ll long long #define setIO(s) freopen(s ...