题目描述

检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行、每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子。

上面的布局可以用序列2 4 6 1 3 5来描述,第i个数字表示在第i行的相应位置有一个棋子,如下:

行号 1 2 3 4 5 6

列号 2 4 6 1 3 5

这只是跳棋放置的一个解。请编一个程序找出所有跳棋放置的解。并把它们以上面的序列方法输出。解按字典顺序排列。请输出前3个解。最后一行是解的总个数。

//以下的话来自usaco官方,不代表洛谷观点

特别注意: 对于更大的N(棋盘大小N x N)你的程序应当改进得更有效。不要事先计算出所有解然后只输出(或是找到一个关于它的公式),这是作弊。如果你坚持作弊,那么你登陆USACO Training的帐号删除并且不能参加USACO的任何竞赛。我警告过你了!

输入格式

一个数字N (6 <= N <= 13) 表示棋盘是N x N大小的。

输出格式

前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。

输入输出样例

输入 #1复制

6
输出 #1复制

2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4

说明/提示

题目翻译来自NOCOW。

USACO Training Section 1.5


题解

此题是标准的DFS题目。有一个非常朴素的想法,就是用一个二维数组vis表示棋子放置后受到影响的格子。每放置一个棋子侯将所有受到影响的格子+1,DFS结束后将这些格子-1。

#include <iostream>
#include <stdio.h>
#include <math.h>
#include <algorithm>
#include <string.h> using namespace std; const int MAXN = ;
int n, s = , cnt = , cnt2 = ;
int vis[MAXN][MAXN], ans[MAXN][MAXN], map[MAXN][MAXN]; void dfs( int x )
{
if ( x > n )
{
s++;
cnt++;
if ( cnt <= )
{
cnt2 = ;
for ( int i = ; i <= n; i++ )
{
for ( int j = ; j <= n; j++ )
{
if ( map[i][j] == )
{
cnt2++;
ans[cnt][cnt2] = j;
}
}
}
}
return;
}
for ( int i = ; i <= n; i++ )
{
if ( vis[x][i] == )
{
// cout << x << ", " << i << endl;
vis[x][i]++;
map[x][i] = ;
for ( int j = ; j <= n; j++ )
{
vis[x][j]++;
if ( j >= x )
{
vis[j][i]++;
}
if ( x + j <= n && i >= j )
{
vis[x + j][i - j]++;
}
if ( x + j <= n && i + j <= n )
{
vis[x + j][i + j]++;
}
}
dfs( x + );
vis[x][i]--;
map[x][i] = ;
for ( int j = ; j <= n; j++ )
{
vis[x][j]--;
if ( j >= x )
{
vis[j][i]--;
}
if ( x + j <= n && i >= j )
{
vis[x + j][i - j]--;
}
if ( x + j <= n && i + j <= n )
{
vis[x + j][i + j]--;
}
}
}
}
} int main()
{
cin >> n;
dfs( );
for ( int i = ; i <= ; i++ )
{
for ( int j = ; j <= n; j++ )
{
cout << ans[i][j] << " ";
}
cout << endl;
}
cout << cnt << endl; return();
}

本来以为这个代码会TLE,但是很幸运的是代码AC了。最后一个测试点用了800+ms。

这个代码是可以被优化的,可以用3个一维数组代替二维数组。一个一维数组代表所有列,只要有一个棋子布在某列,则这个数组列对应的元素就置1。类似的2个一维数组代表和2条对角线平行的线。

洛谷 P1219 八皇后题解的更多相关文章

  1. 洛谷 P1219 八皇后【经典DFS,温习搜索】

    P1219 八皇后 题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序 ...

  2. 洛谷 P1219八皇后

    把全部,在这251秒,赌上! ——<游戏人生zero> 题目:https://www.luogu.org/problem/P1219 八皇后是一道非常非常非常经典的深搜+回溯的题目. 这道 ...

  3. 洛谷 p1219 八皇后

    刚参加完蓝桥杯 弱鸡错了好几道..回头一看确实不难 写起来还是挺慢的 于是开始了刷题的道路 蓝桥杯又名搜索杯 暴力杯...于是先从dfs刷起 八皇后是很经典的dfs问题 洛谷的这道题是这样的 上面的布 ...

  4. 【洛谷P1219 八皇后】

    参考思路见白书(一本通) 题目链接 题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上 ...

  5. 洛谷P1219 八皇后【dfs】

    题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 ...

  6. 洛谷P1219 八皇后

    题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 ...

  7. 洛谷 - P1219 - 八皇后 - dfs

    https://www.luogu.org/problemnew/show/P1219 一开始朴素检查对角线就TLE了,给对角线编码之后压缩了13倍时间? 找了很久的bug居然是&&写 ...

  8. 洛谷P1219 八皇后 我。。。。。。

    代码1    (学弟版) #include<bits/stdc++.h>using namespace std;int l[15];bool s[15];                  ...

  9. 洛谷P2832 行路难 分析+题解代码【玄学最短路】

    洛谷P2832 行路难 分析+题解代码[玄学最短路] 题目背景: 小X来到了山区,领略山林之乐.在他乐以忘忧之时,他突然发现,开学迫在眉睫 题目描述: 山区有n座山.山之间有m条羊肠小道,每条连接两座 ...

随机推荐

  1. .NET ftp文件上传和下载

    文章参考来源地址:https://blog.csdn.net/wybshyy/article/details/52095542 本次对代码进行了一点扩展:将文件上传到ftp指定目录下,若目录不存在则创 ...

  2. Linux 就该这么学 CH02新手必须掌握的Linux命令

    0 概述 本章内容如下 强大的shell. 帮助文档命令(1) 系统工作命令(10) 系统状态监测命令(8) 工作目录切换命令(3) 文本文件编辑命令(9) 文件目录管理命令(7) 打包压缩或搜索命令 ...

  3. 2019广东外语外贸大学CTF新手赛-密码学-RSA题解

    题面 n=100000463700003241 e=17 密文: 分析: 题面已明示是RSA加密,已公开n与公钥e,n为1e18内的数字(64位).要爆破RSA,显然是先分析n的值. n的值是由两个素 ...

  4. Windows 7 下使用gitblit + git 搭建小组内文件版本控制环境

    一.GitBlit下载及配置 使用前先看下GitBlit的百科介绍,很简洁:需要java运行环境:是一个纯 Java 库用来管理.查看和处理Git 资料库.即一个基于Java的分布式版本控制系统. 1 ...

  5. [转帖]TimesTen与Redis的对比

    TimesTen与Redis的对比 2017-02-23 17:25:27 dingdingfish 阅读数 3682更多 分类专栏: TimesTen Oracle Redis In-Memory ...

  6. JVM中内存的设置和分配(最大内存,总内存,剩余内存的区别)

    1.设置分配的内存大小 -vmargs -Xms128M -Xmx512M -XX:PermSize=64M -XX:MaxPermSize=128M -vmargs 说明后面是VM的参数,所以后面的 ...

  7. ES6常用的新特性

    1.Let&const <!DOCTYPE html> <html lang="en"> <head> <meta charset ...

  8. cf 595 补题

    1.B2   Books Exchange (hard version) 题意:有n(1~n)个孩子看书,定义一个数组,记录了每个孩子看完

  9. 2019-7-18 collections,time,random,os,sys,序列化模块(json和pickle)应用

    一.collections模块 1.具名元组:namedtuple(生成可以使用名字来访问元素的tuple) 表示坐标点x为1  y为2的坐标 注意:第二个参数可以传可迭代对象,也可以传字符串,但是字 ...

  10. golang 网络编程之如何正确关闭tcp连接以及管理它的生命周期

    欢迎访问我的个人网站获取更佳阅读排版 golang 网络编程之如何正确关闭tcp连接以及管理它的生命周期 | yoko blog (https://pengrl.com/p/47401/) 本篇文章部 ...