【BZOJ2111】[ZJOI2010]Perm 排列计数 组合数
【BZOJ2111】[ZJOI2010]Perm 排列计数
Description
称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输出模P以后的值
Input
输入文件的第一行包含两个整数 n和p,含义如上所述。
Output
输出文件中仅包含一个整数,表示计算1,2,⋯,的排列中, Magic排列的个数模 p的值。
Sample Input
Sample Output
HINT
100%的数据中,1 ≤ N ≤ 106, P ≤ 10^9,p是一个质数。
题解:题意可转化为:求n个节点能构成的完全二叉堆的个数。显然我们可以求出左右两棵子树的大小,然后分别递归下去即可。
细节有点多~
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long ll;
const int maxn=1000010;
int m=1000000;
ll n,p;
ll jc[maxn],jcc[maxn],ine[maxn],f[maxn];
int Log[maxn];
ll C(ll a,ll b)
{
if(a<b) return 0;
if(!b) return 1;
if(a<p&&b<p) return jc[a]*jcc[b]%p*jcc[a-b]%p;
return C(a%p,b%p)*C(a/p,b/p)%p;
}
ll calc(ll x)
{
if(f[x]) return f[x];
ll a=x-(1<<Log[x+1])+1;
if(a<(1<<Log[x+1]-1)) a=(1<<Log[x+1]-1)-1+a;
else a=(1<<Log[x+1])-1;
return f[x]=C(x-1,a)*calc(a)%p*calc(x-a-1)%p;
}
int main()
{
scanf("%lld%lld",&n,&p);
if(m>=p) m=p-1;
ll i;
jc[0]=jcc[0]=1,ine[0]=ine[1]=1;
for(i=2;i<=m;i++) ine[i]=(p-(p/i)*ine[p%i]%p)%p;
for(i=1;i<=m;i++) jc[i]=jc[i-1]*i%p,jcc[i]=jcc[i-1]*ine[i]%p;
for(i=2;i<=n+1;i++) Log[i]=Log[i>>1]+1;
f[0]=f[1]=1;
printf("%lld",calc(n));
return 0;
}
【BZOJ2111】[ZJOI2010]Perm 排列计数 组合数的更多相关文章
- BZOJ2111: [ZJOI2010]Perm 排列计数
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2111 题意:一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2< ...
- [BZOJ2111][ZJOI2010]Perm排列计数(组合数学)
题意就是求一个n个点的堆的合法形态数. 显然,给定堆中所有数的集合,则这个堆的根是确定的,而由于堆是完全二叉树,所以每个点左右子树的大小也是确定的. 设以i为根的堆的形态数为F(i),所以F(i)+= ...
- [bzoj2111][ZJOI2010]Perm 排列计数 ——问题转换,建立数学模型
题目大意 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...
- [BZOJ2111]:[ZJOI2010]Perm 排列计数(组合数学)
题目传送门 题目描述 称一个1,2,...,N的排列${P}_{1}$,${P}_{2}$,...,${P}_{N}$是Magic的,当且仅当2≤i≤N时,${P}_{i}$>${P}_{\fr ...
- BZOJ 2111: [ZJOI2010]Perm 排列计数 [Lucas定理]
2111: [ZJOI2010]Perm 排列计数 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1936 Solved: 477[Submit][ ...
- 2111: [ZJOI2010]Perm 排列计数
2111: [ZJOI2010]Perm 排列计数 链接 题意: 称一个1,2,...,N的排列$P_1,P_2...,P_n$是Magic的,当且仅当$2<=i<=N$时,$P_i> ...
- bzoj 2111: [ZJOI2010]Perm 排列计数 (dp+卢卡斯定理)
bzoj 2111: [ZJOI2010]Perm 排列计数 1 ≤ N ≤ 10^6, P≤ 10^9 题意:求1~N的排列有多少种小根堆 1: #include<cstdio> 2: ...
- 【bzoj2111】[ZJOI2010]Perm 排列计数 dp+Lucas定理
题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Mogic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Mogic的,答案可能很 ...
- 【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas
[题目]BZOJ 2111 [题意]求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果.\(n \leq 10^6,p \leq 10^9\),p是素数 ...
随机推荐
- 我要好offer之 概率题大总结
1. 利用等概率Rand5生成等概率Rand3 Rand5生成等概率Rand3 这个题目可以扩展为:利用等概率RandM生成等概率RandN (M > N) 这里,我们首先明白一个简单的知识点: ...
- 转 Python常见数据结构整理
http://www.cnblogs.com/jeffwongishandsome/archive/2012/08/05/2623660.html Python常见数据结构整理 Python中常见的数 ...
- linux 调试常用命令
top 参数 1 ,查看多核cpu 也可用 mpstat -P ALL pstate PID 查看进程堆栈 pmap -x PID 查看进程 内存段 ldd XXX.so 查看 .so 的link ...
- poj 2253(kruskal)
Frogger Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 34968 Accepted: 11235 Descrip ...
- IOS 使用DSYM文件定位Bug 的具体位置
在项目的开发中,我们通常需要排查和修改测试中和发布后线上的一些bug,现在有一些第三方的bug分享和查找工具SDK,如腾讯的Bugly和听云等,包括苹果的开发工具xcode也自带 bug查找工具.那么 ...
- HDU 3068 Manacher
题目链接:http://hdu.hustoj.com/showproblem.php?pid=3068 今天学习一下马拉车算法,虽然mg讲过,但是没有系统去学. 算法学习:参考博客 马拉车模板题. # ...
- webstorm 2016 激活破解
2017.2.27更新 选择“license server” 输入:http://idea.imsxm.com/ 2016.2.2 版本的破解方式: 安装以后,打开软件会弹出一个对话框:选择“lice ...
- 为什么HierachyViewer无法连接真机调试
关于什么是Hierarchy Viewer,请查看官方文档:http://developer.android.com/tools/debugging/debugging-ui.html.个人理解:Hi ...
- 理解Neural Style
paperA Neural Algorithm of Artistic Style 在艺术领域,尤其是绘画,艺术家们通过创造不同的内容与风格,并相互交融影响来创立独立的视觉体验.如果给定两张图像,现在 ...
- python 列表结构更新的奇妙问题
使用python + plt 画图遇到了一个奇怪的问题 应该出来的是这样: 结果做出来以后是这样: 为什么画到一起了...... 这个锅python列表背 a=[1,2]b=a 这样 改变b ,a ...