Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5742    Accepted Submission(s): 1973

Problem Description
Consider the following exercise, found in a generic linear algebra textbook.

Let A be an n × n matrix. Prove that the following statements are equivalent:

1. A is invertible.
2. Ax = b has exactly one solution for every n × 1 matrix b.
3. Ax = b is consistent for every n × 1 matrix b.
4. Ax = 0 has only the trivial solution x = 0.

The
typical way to solve such an exercise is to show a series of
implications. For instance, one can proceed by showing that (a) implies
(b), that (b) implies (c), that (c) implies (d), and finally that (d)
implies (a). These four implications show that the four statements are
equivalent.

Another way would be to show that (a) is equivalent
to (b) (by proving that (a) implies (b) and that (b) implies (a)), that
(b) is equivalent to (c), and that (c) is equivalent to (d). However,
this way requires proving six implications, which is clearly a lot more
work than just proving four implications!

I have been given some
similar tasks, and have already started proving some implications. Now I
wonder, how many more implications do I have to prove? Can you help me
determine this?

 
Input
On the first line one positive number: the number of testcases, at most 100. After that per testcase:

* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤
50000): the number of statements and the number of implications that
have already been proved.
* m lines with two integers s1 and s2
(1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved
that statement s1 implies statement s2.

 
Output
Per testcase:

* One line with the minimum number of additional implications that
need to be proved in order to prove that all statements are equivalent.

 
Sample Input
2
4 0
3 2
1 2
1 3
 
Sample Output
4
2
 
Source
 
Recommend
lcy
 
理解一下题意,经过奇奇怪怪的转化以后,得出核心题意:给一个有向图,问最少加几条边可使其成为强连通图。
tarjan缩点以后,统计入度为0和出度为0的点个数,取最大值就是答案。
 
这题总感觉以前做过好多次?
 
 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<cstring>
using namespace std;
const int mxn=;
int top,stack[mxn];
bool inst[mxn];
int cnt,dnow;
int dfn[mxn],low[mxn];
int belone[mxn],in[mxn],out[mxn];
vector<int> e[mxn];
void clear(){
cnt=;dnow=;top=;
memset(dfn,-,sizeof(dfn));
memset(inst,false,sizeof(inst));
memset(in,,sizeof in);
memset(out,,sizeof out);
for(int i=;i<mxn;i++) e[i].clear();
}
int n,m;
void tarjan(int s){
int v=,i;
dfn[s]=++dnow;
low[s]=dfn[s];
inst[s]=true;
stack[++top]=s;
int si=e[s].size();
for(i=;i<si;i++){
v=e[s][i];
if(dfn[v]==-){
tarjan(v);
low[s]=min(low[v],low[s]);
}
else if(inst[v]){
low[s]=min(dfn[v],low[s]);
}
}
if(dfn[s]==low[s]){
cnt++;
do{
v=stack[top--];
belone[v]=cnt;
inst[v]=false;
}while(s!=v);
}
return;
}
void calc(){
if(cnt==){
printf("0\n");return;
}
int i,j;
for(i=;i<=n;i++){
for(j=;j<e[i].size();j++){
int v=e[i][j];
if(belone[i]!=belone[v]){
in[belone[v]]++;
out[belone[i]]++;
}
}
}
int idg=,odg=;
for(i=;i<=cnt;i++){
if(!in[i])idg++;
if(!out[i])odg++;
}
printf("%d\n",max(idg,odg));
return;
}
int main(){
int T;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
if(!m){
if(n==)printf("0\n");
else printf("%d\n",n);
continue;
}
clear();
int i,j;
int u,v;
for(i=;i<=m;i++){
scanf("%d%d",&u,&v);
e[u].push_back(v);
}
for(i=;i<=n;i++){
if(dfn[i]==-)tarjan(i);
}
calc();
}
return ;
}

HDU2767 Proving Equivalences的更多相关文章

  1. HDU2767 Proving Equivalences(加边变为强联通图)

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  2. hdu2767 Proving Equivalences Tarjan缩点

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission( ...

  3. hdu2767 Proving Equivalences --- 强连通

    给一个图,问至少加入�多少条有向边能够使图变成强连通的. 原图是有环的,缩点建图,在该DAG图上我们能够发现,要使该图变成强连通图必须连成环 而加入�最少的边连成环,就是把图上入度为0和出度为0的点连 ...

  4. hdu2767 Proving Equivalences,有向图强联通,Kosaraju算法

    点击打开链接 有向图强联通,Kosaraju算法 缩点后分别入度和出度为0的点的个数 answer = max(a, b); scc_cnt = 1; answer = 0 #include<c ...

  5. hdu 2767 Proving Equivalences

    Proving Equivalences 题意:输入一个有向图(强连通图就是定义在有向图上的),有n(1 ≤ n ≤ 20000)个节点和m(0 ≤ m ≤ 50000)条有向边:问添加几条边可使图变 ...

  6. hdoj 2767 Proving Equivalences【求scc&&缩点】【求最少添加多少条边使这个图成为一个scc】

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  7. Proving Equivalences(加多少边使其强联通)

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  8. UVALive - 4287 - Proving Equivalences(强连通分量)

    Problem   UVALive - 4287 - Proving Equivalences Time Limit: 3000 mSec Problem Description Input Outp ...

  9. HDU 2767 Proving Equivalences(至少增加多少条边使得有向图变成强连通图)

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

随机推荐

  1. Oracle数据库学习(二)

    2.用SQL进行多表查询 (1)无条件多表查询 笛卡尔集:总记录数=table1记录数×table2记录数 select * from table1, table2 (2)等值连接 内连接:selec ...

  2. 二、Linux 系统启动过程

    Linux 系统启动过程 linux启动时我们会看到许多启动信息. Linux系统的启动过程并不是大家想象中的那么复杂,其过程可以分为5个阶段: 内核的引导. 运行 init. 系统初始化. 建立终端 ...

  3. 嵌入式linux:通过qemu模拟mini2440开发环境

    1 编译安装QEMU 首先下载qemu for mini2440,直接打包下载 http://repo.or.cz/w/qemu/mini2440.git/snapshot/HEAD.tar.gz  ...

  4. 二叉树(dfs)

    样例输入: 5        //下面n行每行有两个数 2 3    //第i行的两个数,代表编号为i的节点所连接的两个左右儿子的编号. 4 5 0 0    // 0 表示无 0 0 0 0   样 ...

  5. wusir 面试题答案在老男孩的视频里

    注意:你问答案在哪里?答案在视频里了,就是不给你写. 第一部分 Python基础篇(80题) 为什么学习Python? 通过什么途径学习的Python? Python和Java.PHP.C.C#.C+ ...

  6. 排列算法汇总(下一个排列,全排列,第K个排列)

    一.下一个排列 首先,STL提供了两个用来计算排列组合关系的算法,分别是next_permutation和prev_permutation. next_permutation(nums.begin() ...

  7. java枚举类型转换为Struts2的select的数据

    枚举类:AppSortEnum.java public enum AppSortEnum { CORE(0, "核心应用"), ENJOYMENT(1, "娱乐应用&qu ...

  8. vue时时监听input输入框中 输入内容 写法

    Vue input 监听 使用 v-on:input="change" 实现即可 App.vue <template> <div> <md-field ...

  9. border-color与color

    1.border-color就是color,即border-color的默认颜色就是color 当没有指定border-color的时候,会使用color作为边框的颜色! 类似的还有text-shad ...

  10. Windows网络编程笔记6 --- WinSock I/O 控制方法

    Windows提供了两种方式“套接字模式”和“套接字I/O模型”,可对一个套接字上的I/O行为加以控制.套接字模式用于决定在随一个套接字调用时,那些 Winsock函数的行为.其中的模型包括括sele ...