Description

称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输出模P以后的值

Input

输入文件的第一行包含两个整数 n和p,含义如上所述。

Output

输出文件中仅包含一个整数,表示计算1,2,⋯, ���的排列中, Magic排列的个数模 p的值。

Sample Input

20 23

Sample Output

16

HINT

100%的数据中,1 ≤ ��� N ≤ 106, P��� ≤ 10^9,p是一个质数。


令fa[i]=i/2,就出现了一棵树。

f[i]表示i的子树的排列方案数。

siz[i]表示i的子树大小。

f[x]*=f[to[i]]*C(siz[x]-1,siz[to[i]])。siz[x]是不断更新的。

其中那个组合数的含义是每个儿子交错排列的方案数。

有坑点,mod可能小于n。逆元需要分类讨论。

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 1000050
typedef long long ll;
ll fac[N],inv[N],f[N];
int siz[N],n,m,mod;
int head[N],to[N<<1],nxt[N<<1],cnt;
inline void add(int u,int v) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt;
}
ll qp(ll x,int y) {ll re=1; for(;y;y>>=1,x=x*x%mod) if(y&1) re=re*x%mod; return re;}
void init() {
int i;
for(fac[0]=1,i=1;i<=n;i++) fac[i]=fac[i-1]*i%mod;
if(mod<=n) {
inv[mod-1]=mod-1;
for(i=mod-2;i>=0;i--) inv[i]=inv[i+1]*(i+1)%mod;
for(i=mod;i<=n;i++) inv[i]=inv[i%mod];
}else {
inv[n]=qp(fac[n],mod-2);
for(i=n-1;i>=0;i--) inv[i]=inv[i+1]*(i+1)%mod;
}
}
ll C(int x,int y) {
if(x<y) return 0;
if(x<mod&&y<mod)
return fac[x]*inv[y]%mod*inv[x-y]%mod;
return C(x%mod,y%mod)*C(x/mod,y/mod)%mod;
}
void dfs(int x) {
int i;
f[x]=1;
siz[x]=1;
for(i=head[x];i;i=nxt[i]) {
dfs(to[i]);
siz[x]+=siz[to[i]];
f[x]=f[x]*C(siz[x]-1,siz[to[i]])%mod*f[to[i]]%mod;
}
}
int main() {
scanf("%d%d",&n,&mod);
init();
int i;
for(i=2;i<=n;i++) add(i>>1,i);
dfs(1);
printf("%lld\n",f[1]);
}

BZOJ_2111_[ZJOI2010]Perm 排列计数_树形DP+组合数学的更多相关文章

  1. bzoj 2111: [ZJOI2010]Perm 排列计数【树形dp+lucas】

    是我想复杂了 首先发现大于关系构成了一棵二叉树的结构,于是树形dp 设f[i]为i点的方案数,si[i]为i点的子树大小,递推式是\( f[i]=f[i*2]*f[i*2+1]*C_{si[i]-1} ...

  2. BZOJ 2111 [ZJOI2010]Perm 排列计数:Tree dp + Lucas定理

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2111 题意: 给定n,p,问你有多少个1到n的排列P,对于任意整数i∈[2,n]满足P[i ...

  3. bzoj 2111: [ZJOI2010]Perm 排列计数 (dp+卢卡斯定理)

    bzoj 2111: [ZJOI2010]Perm 排列计数 1 ≤ N ≤ 10^6, P≤ 10^9 题意:求1~N的排列有多少种小根堆 1: #include<cstdio> 2: ...

  4. BZOJ 2111: [ZJOI2010]Perm 排列计数 [Lucas定理]

    2111: [ZJOI2010]Perm 排列计数 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1936  Solved: 477[Submit][ ...

  5. 2111: [ZJOI2010]Perm 排列计数

    2111: [ZJOI2010]Perm 排列计数 链接 题意: 称一个1,2,...,N的排列$P_1,P_2...,P_n$是Magic的,当且仅当$2<=i<=N$时,$P_i> ...

  6. BZOJ_1833_[ZJOI2010]count 数字计数_数位DP

    BZOJ_1833_[ZJOI2010]count 数字计数_数位DP 题意: 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 分析: 数位DP f[i][ ...

  7. 【BZOJ2111】[ZJOI2010]Perm 排列计数 组合数

    [BZOJ2111][ZJOI2010]Perm 排列计数 Description 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi> ...

  8. [BZOJ2111]:[ZJOI2010]Perm 排列计数(组合数学)

    题目传送门 题目描述 称一个1,2,...,N的排列${P}_{1}$,${P}_{2}$,...,${P}_{N}$是Magic的,当且仅当2≤i≤N时,${P}_{i}$>${P}_{\fr ...

  9. 【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas

    [题目]BZOJ 2111 [题意]求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果.\(n \leq 10^6,p \leq 10^9\),p是素数 ...

随机推荐

  1. Bootstrp--一个导航面板切换的实用例子

    <!--导航区开始--> <ul class="nav nav-tabs nav-stacked" role="tablist"> &l ...

  2. SkipList跳表(一)基本原理

    一直听说跳表这个数据结构,说要学一下的,懒癌犯了,是该治治了 为什么选择跳表 目前经常使用的平衡数据结构有:B树.红黑树,AVL树,Splay Tree(这个树好像还没有听说过),Treep(也没有听 ...

  3. 利用GROUP_CONCAT函数把相同信息的合并到同一个字段中

    SELECT a.*,GROUP_CONCAT(b.pri_name) FROM sh_role a LEFT JOIN sh_privilege b ON FIND_IN_SET(b.id,a.pr ...

  4. 【BZOJ4198】[Noi2015]荷马史诗 贪心+堆

    [BZOJ4198][Noi2015]荷马史诗 Description 追逐影子的人,自己就是影子. ——荷马 Allison 最近迷上了文学.她喜欢在一个慵懒的午后,细细地品上一杯卡布奇诺,静静地阅 ...

  5. 关于eclipse 插件的挂载

    学习java的时候,不喜欢myeclipse 这种插件,什么都准备好了,自己动手就少了,不利于自己学习,现在我就diy 自己选几个插件来用,基本上就是 eclipse 加上我自己要用的插件,插件的安装 ...

  6. HDFS relaxes a few POSIX requirements to enable streaming access to file system data

    https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html Introduction [ ...

  7. 【题解】P2279消防局的设立

    [题解][P2279 HNOI2003]消防局的设立 又是一道贪心. 随便指定一个点为根,可以知道在覆盖了一个节点的子树的情况下,消防站越高越好.那么我们就贪心吧.\(trick\)是按深度\(pus ...

  8. Javascript闭包机制(转)

    原文地址:http://www.felixwoo.com/archives/247 参考:http://www.ruanyifeng.com/blog/2009/08/learning_javascr ...

  9. [2018-10-10]记录一下Vue的一个问题

    最近用vue typescript SPA 做管理后台(ABP官网导出的vue项目模板),遇到一个错误,找了好久,虽然有相关资料,但发现都没解决,这里自己记录一下. Failed to mount c ...

  10. Java基础教程:多线程基础(4)——Lock的使用

    Java基础教程:多线程基础(4)——Lock的使用 快速开始 Java 5中Lock对象的也能实现同步的效果,而且在使用上更加方便. 本节重点的2个知识点是:ReentrantLock类的使用和Re ...