题目链接:https://vjudge.net/problem/HDU-4686

Arc of Dream

Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 5506    Accepted Submission(s): 1713

Problem Description
An Arc of Dream is a curve defined by following function:

where
a0 = A0
ai = ai-1*AX+AY
b0 = B0
bi = bi-1*BX+BY
What is the value of AoD(N) modulo 1,000,000,007?
 
Input
There are multiple test cases. Process to the End of File.
Each test case contains 7 nonnegative integers as follows:
N
A0 AX AY
B0 BX BY
N is no more than 1018, and all the other integers are no more than 2×109.
 
Output
For each test case, output AoD(N) modulo 1,000,000,007.
 
Sample Input
1
1 2 3
4 5 6
2
1 2 3
4 5 6
3
1 2 3
4 5 6
 
Sample Output
4
134
1902
 
Author
Zejun Wu (watashi)
 
Source

题解:

学习之处:

矩阵所要维护的,要么为变量,要么为常数1,而不是变量再乘上一个系数,或者是一个非1的常数。因为:假如变量需要乘上一个系数,那么可以在n*n矩阵中乘上。同样,如果变量需要加上一个常数,那么在对应1的位置,填上这个常数即可。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = 1e6+; const int Size = ;
struct MA
{
LL mat[Size][Size];
void init()
{
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
mat[i][j] = (i==j);
}
}; MA mul(MA x, MA y)
{
MA ret;
memset(ret.mat, , sizeof(ret.mat));
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
for(int k = ; k<Size; k++)
ret.mat[i][j] += 1LL*x.mat[i][k]*y.mat[k][j]%MOD, ret.mat[i][j] %= MOD;
return ret;
} MA qpow(MA x, LL y)
{
MA s;
s.init();
while(y)
{
if(y&) s = mul(s, x);
x = mul(x, x);
y >>= ;
}
return s;
} int main()
{
LL n, a0, ax, ay, b0, bx, by;
while(scanf("%lld",&n)!=EOF)
{
scanf("%lld%lld%lld", &a0,&ax,&ay);
scanf("%lld%lld%lld", &b0,&bx,&by);
a0 %= MOD; ax %= MOD; ay %= MOD;
b0 %= MOD; bx %= MOD; by %= MOD; if(n==)
{
printf("%lld\n", 0LL);
continue;
} MA s;
memset(s.mat, , sizeof(s.mat));
s.mat[][] = ;
s.mat[][] = s.mat[][] = 1LL*ax*bx%MOD;
s.mat[][] = s.mat[][] = 1LL*ax*by%MOD;
s.mat[][] = s.mat[][] = 1LL*ay*bx%MOD;
s.mat[][] = s.mat[][] = 1LL*ay*by%MOD;
s.mat[][] = ax; s.mat[][] = ay;
s.mat[][] = bx; s.mat[][] = by;
s.mat[][] = ; LL f0, s0;
s0 = f0 = 1LL*a0*b0%MOD;
s = qpow(s, n-);
LL ans = ;
ans += (1LL*s0*s.mat[][]%MOD+1LL*f0*s.mat[][]%MOD)%MOD, ans %= MOD;
ans += (1LL*a0*s.mat[][]%MOD+1LL*b0*s.mat[][]%MOD)%MOD, ans %= MOD;
ans += 1LL*s.mat[][]%MOD, ans %= MOD;
printf("%lld\n", ans);
}
}

HDU4686 Arc of Dream —— 矩阵快速幂的更多相关文章

  1. HDU4686 Arc of Dream 矩阵快速幂

    Arc of Dream Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Tota ...

  2. HDU4686——Arc of Dream矩阵快速幂

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4686 题目大意: 已知a0=A0, ai=Ax*ai-1+Ay; b0=B0, bi=Bx*bi-1 ...

  3. hdu----(4686)Arc of Dream(矩阵快速幂)

    Arc of Dream Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Tota ...

  4. S - Arc of Dream 矩阵快速幂

    An Arc of Dream is a curve defined by following function: where a 0 = A0 a i = a i-1*AX+AY b 0 = B0  ...

  5. hdu 4686 Arc of Dream(矩阵快速幂)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=4686 题意: 其中a0 = A0ai = ai-1*AX+AYb0 = B0bi = bi-1*BX+BY ...

  6. HDU 4686 Arc of Dream 矩阵快速幂,线性同余 难度:1

    http://acm.hdu.edu.cn/showproblem.php?pid=4686 当看到n为小于64位整数的数字时,就应该有个感觉,acm范畴内这应该是道矩阵快速幂 Ai,Bi的递推式题目 ...

  7. HDOJ 4686 Arc of Dream 矩阵高速幂

    矩阵高速幂: 依据关系够建矩阵 , 高速幂解决. Arc of Dream Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/ ...

  8. HDU4686 Arc of Dream 矩阵

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - HDU4686 题意概括 a0 = A0 ai = ai-1*AX+AY b0 = B0 bi = bi-1* ...

  9. hdu 4686 Arc of Dream_矩阵快速幂

    题意:略 构造出矩阵就行了 |   AX   0    AXBY   AXBY       0  |                                                   ...

随机推荐

  1. logging模块详解以及常见代码

    1.在django中获取客户端IP地址: if 'HTTP_X_FORWARDED_FOR' in request.META: ip = request.META['HTTP_X_FORWARDED_ ...

  2. ORACLE MOS 翻译

    http://blog.csdn.net/msdnchina/article/details/53174196

  3. [Android] 环境配置之Android Studio开发NDK

    分类:Android环境搭建 (14351)  (20) ========================================================作者:qiujuer博客:bl ...

  4. linux下添加自动启动项,linux 开机自动启动脚本方法

    #service servicename status是当前状态#chkconfig --list servicename是查看启动状态,也就是是否开机自动启动 首先写好脚本,如 mysql,把它放到 ...

  5. jmeter源码编译

    转载:http://blog.csdn.net/wanglha/article/details/42004943 一.下载源码 git clone git://github.com/apache/jm ...

  6. HashSet中存方用户自己定义数据类型数据,重写equals方法和hashCode方法

    import java.util.Set; import java.util.HashSet; public class SetTest { public static void main(Strin ...

  7. substr使用注意

    substr使用时要判断起点和长度是否超过了串本身的长度,否则会抛异常

  8. HTML5开发移动web应用—JQuery Mobile(1)

    JQuery Mobile是一个简单易用的web移动app开发框架.使用它就像使用jQuery一样,引入必要的文件就可以. 最基础的jQuery Mobile文件的结构代码例如以下: <body ...

  9. python訪问redis

    python訪问redis 1 Linux上安装redis a) 下载 $ wget http://download.redis.io/releases/redis-3.0.5.tar.gz b) 编 ...

  10. Machine Learning:Neural Network---Representation

    Machine Learning:Neural Network---Representation 1.Non-Linear Classification 假设还採取简单的线性分类手段.那么会面临着过拟 ...