2653: middle

链接

分析:

  二分答案+主席树。

  对于中位数的经典做法,就是二分一个数,将小于的变成-1,大于等于的变成+1,那么如果sum>=0(因为+1包括等于),L=mid+1,否则R=mid-1。

  那么考虑二分一个中位数(当然只二分出现过的数即可),然后向上面一样判断。

  因为二分的数字只有n个,可以建立n颗只包含-1和+1的权值线段树,发现第i小的权值线段树与第i+1小的权值线段树只有一个位置不同,所以可以类似可持久化的思路,每次只去建立一条链。

  查询的区间有很多个,不能挨个查询它们的和,由于查询最大值,所以可以再在线段树上维护左端最大子段和,右端最大子段和。

代码:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
#include<cctype>
#include<set>
#include<queue>
#include<vector>
#include<map>
#define pa pair<int,int>
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = ;
struct Node{
int sum, Lmx, Rmx;
}T[N * ];
int ls[N * ], rs[N * ], Root[N], Index, n;
pa A[N]; Node operator + (const Node &A,const Node &B) {
Node res;
res.sum = A.sum + B.sum;
res.Lmx = max(A.Lmx, A.sum + B.Lmx);
res.Rmx = max(B.Rmx, A.Rmx + B.sum);
return res;
}
void build(int l,int r,int &rt) {
rt = ++Index;
if (l == r) {
T[rt].sum = T[rt].Lmx = T[rt].Rmx = ; return ;
}
int mid = (l + r) >> ;
build(l, mid, ls[rt]); build(mid + , r, rs[rt]);
T[rt] = T[ls[rt]] + T[rs[rt]];
}
void update(int l,int r,int &rt,int pre,int p) {
if (!rt) rt = ++Index;
if (l == r) {
T[rt].sum = T[rt].Lmx = T[rt].Rmx = -; return ;
}
int mid = (l + r) >> ;
if (p <= mid) {
rs[rt] = rs[pre];
update(l, mid, ls[rt], ls[pre], p);
} else {
ls[rt] = ls[pre];
update(mid + , r, rs[rt], rs[pre], p);
}
T[rt] = T[ls[rt]] + T[rs[rt]];
}
Node query(int l,int r,int rt,int L,int R) {
if (L <= l && r <= R) return T[rt];
int mid = (l + r) >> ;
if (R <= mid) return query(l, mid, ls[rt], L, R);
else if (L > mid) return query(mid + , r, rs[rt], L, R);
else return query(l, mid, ls[rt], L, R) + query(mid + , r, rs[rt], L, R);
}
bool check(int x,int l1,int r1,int l2,int r2) {
Node a, b, c; b.sum = ;
if (l2 > r1 + ) b = query(, n, Root[x], r1 + , l2 - );
a = query(, n, Root[x], l1, r1);
c = query(, n, Root[x], l2, r2);
return (a.Rmx + b.sum + c.Lmx) >= ;
}
int main() {
n = read();
for (int i = ; i <= n; ++i) {
A[i].first = read(), A[i].second = i;
}
sort(A + , A + n + );
build(, n, Root[]);
for (int i = ; i <= n; ++i)
update(, n, Root[i], Root[i - ], A[i - ].second);
int c[], m = read(), ans = , pos;
while (m --) {
for (int i = ; i < ; ++i) c[i] = (read() + ans) % n + ;
sort(c, c + );
int l = , r = n;
while (l <= r) {
int mid = (l + r) >> ;
if (check(mid, c[], c[], c[], c[])) pos = mid, l = mid + ;
else r = mid - ;
}
ans = A[pos].first;
printf("%d\n", ans);
}
return ;
}

2653: middle的更多相关文章

  1. bzoj 2653: middle (主席树+二分)

    2653: middle Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2522  Solved: 1434[Submit][Status][Disc ...

  2. 【BZOJ】2653: middle

    2653: middle Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2381  Solved: 1340[Submit][Status][Disc ...

  3. [BZOJ 2653] middle(可持久化线段树+二分答案)

    [BZOJ 2653] middle(可持久化线段树+二分答案) 题面 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整. 给你一个长度为n的序 ...

  4. BZOJ 2653 middle

    AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=2653 题目大意:多组询问,求左右端点在规定范围内移动所能得到的最大中位数. [分析] 求中 ...

  5. BZOJ 2653: middle 主席树 二分

    https://www.lydsy.com/JudgeOnline/problem.php?id=2653 因为是两个方向向外延伸所以不能对编号取前缀和(这里只有前缀和向后传递的性质,不是实际意义的和 ...

  6. BZOJ 2653 middle | 主席树

    题目: http://www.lydsy.com/JudgeOnline/problem.php?id=2653 题解: 设答案为ans,把大于等于ans的记为1,小于的记为-1,这样可以知道当前an ...

  7. bzoj 2653 middle (可持久化线段树)

    middle Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1981  Solved: 1097[Submit][Status][Discuss] D ...

  8. BZOJ 2653: middle [主席树 中位数]

    传送门 题意: 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整.给你一个 长度为n的序列s.回答Q个这样的询问:s的左端点在[a,b]之间,右 ...

  9. bzoj 2653 middle 二分答案 主席树判定

    判断中位数是否可行需要将当前的解作为分界,大于其的置为1,小于为-1,然后b-c必选,ab,cd可不选,这个用线段树判定就好 但不能每次跑,所以套主席树,按权值排序,构建主席树,更新时将上一个节点改为 ...

随机推荐

  1. C# 判断程序是否已经在运行

    方式1: /// <summary> /// 应用程序的主入口点. /// </summary> [STAThread] static void Main() { //获取欲启 ...

  2. [翻译] CNPPopupController

    CNPPopupController CNPPopupController is a simple and versatile class for presenting a custom popup ...

  3. Elasticsearch部分节点不能发现集群(脑裂)问题处理

    **现象描述** es1,es2,es3三台es组成一个集群,集群状态正常, 当es1 服务器重启后,es1不能加到集群中,自己选举自己为master,这就产生了es集群中所谓的“脑裂” , 把es1 ...

  4. Linux 系统学习梳理_【All】

    第一部分---基础学习 00.Linux操作系统各版本ISO镜像下载 00.Linux系统下安装Vmware(虚拟机) 00.Linux 系统安装[Redhat] 00.Linux 系统安装[Cent ...

  5. Linux cal命令详解

    cal 显示指定月份的日历 常见命令参数 NAME cal - displays a calendar SYNOPSIS cal [-smjy13] [[[day] month] year] DESC ...

  6. zabbix 监控iptables

    参看的文章链接忘了...... yum -y install iptstate 1.脚本位置和内容 [root@web1 scripts]# pwd /etc/zabbix/scripts [root ...

  7. Sql Server 支持的数据类型

    T-SQL语言和SQLServer数据库中的数据通常需要定义一个数据类型,数据类型定义了对象可以容纳的数据的种类. 哪些对象需要数据类型 (1).表和视图的列:                 在定义 ...

  8. javascript 的MD5代码备份,跟java互通

    var MD5 = function (string) {                   function RotateLeft(lValue, iShiftBits) {            ...

  9. swift的Hashable

    Conforming to the Hashable Protocol To use your own custom type in a set or as the key type of a dic ...

  10. JavaScript-2.内置对象---简单脚本之弹出对话框显示当前时间 ---ShinePans

    <html> <head> <meta http-equiv="content-type" content="text/html; char ...