LintCode 388: Kth Permutation
LintCode 388: Kth Permutation
题目描述
给定 n
和 k
,求123..n
组成的排列中的第 k
个排列。
样例
对于 n = 3
, 所有的排列如下:
123
132
213
231
312
321
如果 k = 4
, 第4
个排列为231
.
Wed Mar 1 2017
思路
这道题很明显就不用什么算法呀,直接用除法算一下就好了。
为了取整方便,把题目中的 \(k\) 从 \(1\) 开始计数,改成从 \(0\) 开始计数,即 \(k = k - 1\) 即可。
对于 \(n\) 个数,第 \(i\) 位数有 \(n - i + 1\) 个可选的数字\((1 \leq i \leq n)\),这个数字之后的排列情况有 \((n - i)!\) 种。
所以在待选数字集中第 \(\frac{k-1}{(n-1)!}\) 个数字就是应该放在第 \(i\) 位上。
代码
// 第k个排列
class Solution {
public:
/**
* @param n: n
* @param k: the kth permutation
* @return: return the k-th permutation
*/
int fact(int k)
{
if (k <= 1) return 1;
return k * fact(k - 1);
}
string getPermutation(int n, int k)
{
string s;
string* ans = new string();
for (int i = 1; i <= n; ++i)
s.push_back('0' + i);
--k;
for (int i = 1; i <= n; ++i)
{
int f = fact(n - i);
int p = k / f;
k -= p * f;
ans->push_back(s[p]);
s.erase(s.begin() + p);
}
return *ans;
}
};
LintCode 388: Kth Permutation的更多相关文章
- LintCode 190: Next Permutation
LintCode 190: Next Permutation 题目描述 给定一个若干整数的排列,给出按正数大小进行字典序从小到大排序后的下一个排列. 如果没有下一个排列,则输出字典序最小的序列. 样例 ...
- lintcode:next permutation下一个排列
题目 下一个排列 给定一个整数数组来表示排列,找出其之后的一个排列. 样例 给出排列[1,3,2,3],其下一个排列是[1,3,3,2] 给出排列[4,3,2,1],其下一个排列是[1,2,3,4] ...
- lintcode:previous permutation上一个排列
题目 上一个排列 给定一个整数数组来表示排列,找出其上一个排列. 样例 给出排列[1,3,2,3],其上一个排列是[1,2,3,3] 给出排列[1,2,3,4],其上一个排列是[4,3,2,1] 注意 ...
- leetcode & lintcode for bug-free
刷题备忘录,for bug-free leetcode 396. Rotate Function 题意: Given an array of integers A and let n to be it ...
- Lintcode388 Permutation Sequence solution 题解
[题目描述] Given n and k, return the k-th permutation sequence. Notice:n will be between 1 and 9 inclusi ...
- leetcode & lintcode 题解
刷题备忘录,for bug-free 招行面试题--求无序数组最长连续序列的长度,这里连续指的是值连续--间隔为1,并不是数值的位置连续 问题: 给出一个未排序的整数数组,找出最长的连续元素序列的长度 ...
- Permutation Sequence
The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...
- [LeetCode] Permutation Sequence 序列排序
The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...
- Leetcode 60. Permutation Sequence
The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...
随机推荐
- MiniUI合并单元格
function onload(e){ var grid = e.sender; var len = grid.data.length; var data= grid.data; ,num=; var ...
- windows多线程(十) 生产者与消费者问题
一.概述 生产者消费者问题是一个著名的线程同步问题,该问题描述如下:有一个生产者在生产产品,这些产品将提供给若干个消费者去消费,为了使生产者和消费者能并发执行,在两者之间设置一个具有多个缓冲区的缓冲池 ...
- getcontext makecontext setcontext swapcontext介绍
ucontext簇函数学习 https://github.com/zfengzhen/Blog/blob/master/article/ucontext%E7%B0%87%E5%87%BD%E6%95 ...
- angular 神坑 ,回调函数无法被监视
原方法,使用一个confirm 点ok然后回调,结果 界面无法刷新,搜索了下 是因为$scope没有监视model,必须使用apply方法 $scope.SelectedRow=row; negAle ...
- delphi ERP框架
之前做c/s架构,接了有家装饰的一个ERP项目,做了一个ERP框架,现在转后端开发了,这些东西还是蛮怀念的,就开源出来吧,有需要的同学可以参考. https://github.com/qianlnk/ ...
- CF992C Nastya and a Wardrobe
我是题面 题意很清晰,这种题,我们当然还是有两种方法来做啦 方法一:找规律 读完题我们来看样例,通过样例一已我们大概可以看出,答案或许是\(n*2^{k+1}\) 肯定不能这么简单对吧,那就来看样例二 ...
- 【刷题】BZOJ 3626 [LNOI2014]LCA
Description 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1. 设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先. ...
- 【转载】dfs序七个经典问题
作者:weeping 出处:www.cnblogs.com/weeping/ 原文链接 https://www.cnblogs.com/weeping/p/6847112.html 参考自:<数 ...
- 【CF438E】小朋友和二叉树 解题报告
[CF438E]小朋友和二叉树 Description 我们的小朋友很喜欢计算机科学,而且尤其喜欢二叉树. 考虑一个含有\(n\)个互异正整数的序列\(c_1,c_2,\dots,c_n\). ...
- 什么是 metadata (元数据)
1. 什么是元数据 任何文件系统中的数据分为数据和元数据.数据是指普通文件中的实际数据,而元数据指用来描述一个文件的特征的系统数据,诸如访问权限.文件拥有者以及文件数据块的分布信息(inode...) ...