【题目】F - Many Easy Problems

【题意】给定n个点的树,定义S为大小为k的点集,则f(S)为最小的包含点集S的连通块大小,求k=1~n时的所有点集f(S)的和取模924844033。n<=2*10^5。

【算法】排列组合+NTT

【题解】考虑每个点只会在k个点都在其一个子树时无贡献,即:

$$ANS_k=\sum_{x=1}^{n}\binom{n}{k}-\sum_{y}\binom{sz[y]}{k}+\binom{n-sz[y]}{k}$$

令$cnt_i$表示满足sz[x]=i或n-sz[x]=i的数量,那么只需要计算:

$$ans_k=\sum_{i=k}^{n}cnt_i*\binom{i}{k}$$

拆分组合数:

$$k!ans_k=\sum_{i=k}^{n}\frac{cnt_i*i!}{(i-k)!}$$

令:

$$A_x=cnt_x*x!,x\in[1,n]$$

$$B_x=\frac{1}{x!},x\in[1,n]$$

令B'表示数组B的反转,那么可以写成:

$$C_k=\sum_{i=k}^{n}A_i*B_{i-k}=\sum_{i=k}^{n}A_i*B'_{n+k+1-i}$$

扩展上下界:

$$D_{n+k+1}=\sum_{i=0}^{n+k+1}A_i*B'_{n+k+1-i}$$

用NTT处理即可,原根为5。

复杂度O(n log n)。

【AtCoder】AGC005 F - Many Easy Problems 排列组合+NTT的更多相关文章

  1. AtcoderGrandContest 005 F. Many Easy Problems

    $ >AtcoderGrandContest \space 005 F.  Many Easy Problems<$ 题目大意 : 有一棵大小为 \(n\) 的树,对于每一个 \(k \i ...

  2. AtCoder Grand Contest 002 (AGC002) F - Leftmost Ball 动态规划 排列组合

    原文链接https://www.cnblogs.com/zhouzhendong/p/AGC002F.html 题目传送门 - AGC002F 题意 给定 $n,k$ ,表示有 $n\times k$ ...

  3. [题解] Atcoder AGC 005 F Many Easy Problems NTT,组合数学

    题目 观察当k固定时答案是什么.先假设每个节点对答案的贡献都是\(\binom{n}{k}\),然后再减掉某个点没有贡献的选点方案数.对于一个节点i,它没有贡献的方案数显然就是所有k个节点都选在i连出 ...

  4. 【AtCoder】AGC005F - Many Easy Problems

    题解 我们把一个点的贡献转化为一条边的贡献,因为边的数量是点的数量-1,最后再加上选点方案数\(\binom{n}{k}\)即可 一条边的贡献是\(\binom{n}{k} - \binom{a}{k ...

  5. Atcoder Beginner Contest151E(排列组合)

    排列组合 #define HAVE_STRUCT_TIMESPEC #include<bits/stdc++.h> using namespace std; ]; ; ]; long lo ...

  6. 【指数型母函数】hdu1521 排列组合

    #include<cstdio> #include<cstring> using namespace std; int n,m,jiecheng[11]; double a[1 ...

  7. hdu1521 排列组合 指数型母函数模板题

    排列组合 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  8. java实现排列组合(通俗易懂)

    个人感觉这篇文章(原文地址见文章尾)写的排列组合问题,非常的好,而且是一步一步引出排列组合问题,我也是看了这篇文章,一步一步按照这个思路来,最后会了自己的一套排列组合 也因此在算法竞赛中,两次用到了, ...

  9. [Agc028B]Removing Blocks_排列组合

    Removing Blocks 题目链接:https://atcoder.jp/contests/agc028/tasks/agc028_b 数据范围:略. 题解: 这种问题的第一步很套路,就是对于每 ...

随机推荐

  1. (转)web性能优化

    前端是庞大的,包括 HTML. CSS. Javascript.Image .Flash等等各种各样的资源.前端优化是复杂的,针对方方面面的资源都有不同的方式.那么,前端优化的目的是什么 ? 1. 从 ...

  2. ACM数论之旅5---数论四大定理(你怕不怕(☆゚∀゚)老实告诉我)

    (本篇无证明,想要证明的去找度娘)o(*≧▽≦)ツ ----------数论四大定理--------- 数论四大定理: 1.威尔逊定理 2.欧拉定理 3.孙子定理(中国剩余定理) 4.费马小定理 (提 ...

  3. ySQL性能优化的21个最佳实践 和 mysql使用索引

    MySQL性能优化的21个最佳实践 和 mysql使用索引 今天,数据库的操作越来越成为整个应用的性能瓶颈了,这点对于Web应用尤其明显.关于数据库的性能,这并不只是DBA才需要担心的事,而这更是我 ...

  4. POJ3177_Redundant Paths

    给你一个无向图,求至少加入多少条边,使得整个图是双联通的. 通过枚举题意,发现重边是不算的,直接去掉. 首先把那些边是桥计算出来,把位于同一个连通分量里面的点缩成一个点(并查集),然后计算缩点后有多少 ...

  5. POJ1430

    这个题目初看上去是一个排列组合题,而实际上……也是一个排列组合题. 题目描述是: Description The Stirling number of the second kind S(n, m) ...

  6. D-Separation(D分离)-PRML-8.22-Graphical Model 五 18 by 小军

    D-Separation(D分离)-PRML-8.22-Graphical Model 五18by 小军   一.引言 在贝叶斯网络的学习过程中,经常会遇到(D-Separation)D-分离这个概念 ...

  7. java中new两个对象,在堆中开辟几个对象空间

    内存堆中有两个对象,两个对象里都有独立的变量.p1 p2指向的不是同一个内存空间. 也可以这样描述引用p1,p2指向两个不同的对象.

  8. 【刷题】BZOJ 3668 [Noi2014]起床困难综合症

    Description 21 世纪,许多人得了一种奇怪的病:起床困难综合症,其临床表现为:起床难,起床后精神不佳.作为一名青春阳光好少年,atm 一直坚持与起床困难综合症作斗争.通过研究相关文献,他找 ...

  9. 使用cmstp绕过应用程序白名单

    默认情况下,AppLocker允许在文件夹中执行二进制文件,这是可以绕过它的主要原因.已经发现,这样的二进制文件可以很容易地用于绕过AppLocker和UAC.与Microsoft相关的二进制文件之一 ...

  10. Redis事务介绍

    概述 相信学过Mysql等其他数据库的同学对事务这个词都不陌生,事务表示的是一组动作,这组动作要么全部执行,要么全部不执行.为什么会有这样的需求呢?看看下面的场景: 微博是一个弱关系型社交网络,用户之 ...