1. 需求

因为项目需要,需要多次登录某网站抓取信息。所以学习了验证码的一些小知识。文章参考http://blog.csdn.net/problc/article/details/5794460的部分内容。

需要程序识别的验证码格式如图所示:,这个图片符合固定大小,固定位置,固定字体,固定颜色的范围,实现起来相对简单。

验证码识别基本分四步,图片预处理,分割,训练,识别。为便于演示,我这里分更多的步骤。

BTW:

如果是形如:的验证码,请参考:http://blog.csdn.net/problc/article/details/5797507

如果是形如:的验证码,请参考:http://blog.csdn.net/problc/article/details/5800093

如果是形如:的验证码,请参考:http://blog.csdn.net/problc/article/details/5846614

更多验证码相关内容,请参考:http://blog.csdn.net/problc/article/details/5983276

2. 环境

目录结构:download目录用于存放下载的验证码;train用于存放供比对的标准图片;result用于存放比对结果。

包:HttpClient4.2(用于抓取图片)

3. 步骤

3.1 下载验证码:将多个验证码图片下载到指定目录,要求各种可能的验证码(单个数字)都应该有,比如:0-9。

    // 1.下载验证码:将多个验证码图片下载到指定目录,要求各种可能的验证码(单个数字)都应该有,比如:0-9。
private void downloadImage() throws Exception {
HttpClient httpClient = new DefaultHttpClient();
for (int i = 0; i < 10; i++) {
String url = "http://www.yoursite.com/yz.php";
HttpGet getMethod = new HttpGet(url);
try {
HttpResponse response = httpClient.execute(getMethod, new BasicHttpContext());
HttpEntity entity = response.getEntity();
InputStream instream = entity.getContent();
OutputStream outstream = new FileOutputStream(new File(DOWNLOAD_DIR, i + ".png"));
int l = -1;
byte[] tmp = new byte[2048];
while ((l = instream.read(tmp)) != -1) {
outstream.write(tmp);
}
outstream.close();
} finally {
getMethod.releaseConnection();
}
} System.out.println("下载验证码完毕!");
}

下载后download目录内容:

3.2 去除图像干扰像素(非必须操作,只是可以提高精度而已;可以按照自己的需求进行更改)。

    // 2.去除图像干扰像素(非必须操作,只是可以提高精度而已)。
public static BufferedImage removeInterference(BufferedImage image)
throws Exception {
int width = image.getWidth();
int height = image.getHeight();
for (int x = 0; x < width; ++x) {
for (int y = 0; y < height; ++y) {
if (isFontColor(image.getRGB(x, y))) {
// 如果当前像素是字体色,则检查周边是否都为白色,如都是则删除本像素。
int roundWhiteCount = 0;
if(isWhiteColor(image, x+1, y+1))
roundWhiteCount++;
if(isWhiteColor(image, x+1, y-1))
roundWhiteCount++;
if(isWhiteColor(image, x-1, y+1))
roundWhiteCount++;
if(isWhiteColor(image, x-1, y-1))
roundWhiteCount++;
if(roundWhiteCount == 4) {
image.setRGB(x, y, Color.WHITE.getRGB());
}
}
}
}
return image;
} // 取得指定位置的颜色是否为白色,如果超出边界,返回true
// 本方法是从removeInterference方法中摘取出来的。单独调用本方法无意义。
private static boolean isWhiteColor(BufferedImage image, int x, int y) throws Exception {
if(x < 0 || y < 0) return true;
if(x >= image.getWidth() || y >= image.getHeight()) return true; Color color = new Color(image.getRGB(x, y)); return color.equals(Color.WHITE)?true:false;
}

刚下载的图片:;经过去除图像干扰像素的操作后:

3.3 判断拆分验证码的标准:就是定义验证码中包含的各数字的x、y坐标值,及它们的宽度(width)、高度(height)。

打开PhotoShop,对图片进行编辑,用选择工具(M)选择一个数字,在信息栏中就看到当前字的宽度、高度。各数字的x、y坐标值同样可以此方法获取到。

对应代码:

    // 3.判断拆分验证码的标准:就是定义验证码中包含的各数字的x、y坐标值,及它们的宽度(width)、高度(height)。
private static List<BufferedImage> splitImage(BufferedImage image) throws Exception {
final int DIGIT_WIDTH = 19;
final int DIGIT_HEIGHT = 17; List<BufferedImage> digitImageList = new ArrayList<BufferedImage>();
digitImageList.add(image.getSubimage(2, 2, DIGIT_WIDTH, DIGIT_HEIGHT));
digitImageList.add(image.getSubimage(20, 2, DIGIT_WIDTH, DIGIT_HEIGHT));
digitImageList.add(image.getSubimage(40, 2, DIGIT_WIDTH, DIGIT_HEIGHT));
digitImageList.add(image.getSubimage(60, 2, DIGIT_WIDTH, DIGIT_HEIGHT)); return digitImageList;
}

3.4 判断字体的颜色含义:正常可以用rgb三种颜色加起来表示,字与非字应该有显示的区别,找出来。

同样通过PhotoShop,用吸管工具(I)选择有颜色的部分,在信息栏中可以看到当前的RGB值,因为是纯色,记录三值相加结果即可。我这里R+G+B是340。

对应代码(如果不是纯色,可以用大于、小于某一范围之类的判断,而不是用等于):

    // 4.判断字体的颜色含义:正常可以用rgb三种颜色加起来表示,字与非字应该有显示的区别,找出来。
private static boolean isFontColor(int colorInt) {
Color color = new Color(colorInt); return color.getRed() + color.getGreen() + color.getBlue() == 340;
}

3.5 将下载的验证码图片全部拆分到另一个目录。

    // 5.将下载的验证码图片全部拆分到另一个目录。
public void generateStdDigitImgage() throws Exception {
File dir = new File(DOWNLOAD_DIR);
File[] files = dir.listFiles(new ImageFileFilter("png")); int counter = 0;
for (File file : files) {
BufferedImage image = ImageIO.read(file);
removeInterference(image);
List<BufferedImage> digitImageList = splitImage(image);
for (int i = 0; i < digitImageList.size(); i++) {
BufferedImage bi = digitImageList.get(i);
ImageIO.write(bi, "PNG", new File(TRAIN_DIR, "temp_" + counter++ + ".png"));
}
}
System.out.println("生成供比对的图片完毕,请到目录中手工识别并重命名图片,并删除其它无关图片!");
}

运行后train目录内容:

3.6 手工命名文件:在资源管理器中,切换到train目录手工将这些拆分的文件命名到正确的名称,删除无用的。

3.7 测试判断效果:运行方法,可以在isFontColor方法中调整rgb三值累加的范围值,以达到高的分辨率。

    // 7.测试判断效果:运行方法,可以调整rgb三值,以达到高的分辨率。
// 目前此方法提供在输出判断结果的同时,在目标目录生成以判断结果命名的新验证码图片,以批量检查效果。
public void testDownloadImage() throws Exception {
File dir = new File(DOWNLOAD_DIR);
File[] files = dir.listFiles(new ImageFileFilter("png")); for (File file : files) {
String validateCode = getValidateCode(file);
System.out.println(file.getName() + "=" + validateCode);
} System.out.println("判断完毕,请到相关目录检查效果!");
}

运行后result目录结果如下图(识别率100%):

3.8 开放给外界接口调用。

    /**
* 8.提供给外界接口调用。
* @param file
* @return
* @throws Exception
*/
public static String getValidateCode(File file) throws Exception {
// 装载图片
BufferedImage image = ImageIO.read(file);
removeInterference(image);
// 拆分图片
List<BufferedImage> digitImageList = splitImage(image); // 循环每一位数字图进行比对
StringBuilder sb = new StringBuilder();
for (BufferedImage digitImage : digitImageList) {
String result = "";
int width = digitImage.getWidth();
int height = digitImage.getHeight(); // 最小的不同次数(初始值为总像素),值越小就越像。
int minDiffCount = width * height;
for (BufferedImage bi : trainMap.keySet()) {
// 对每一位数字图与字典中的进行按像素比较
int currDiffCount = 0; // 按像素比较不同的次数
outer : for (int x = 0; x < width; ++x) {
for (int y = 0; y < height; ++y) {
if (isFontColor(digitImage.getRGB(x, y)) != isFontColor(bi.getRGB(x, y))) {
// 按像素比较如果不同,则加1;
currDiffCount++;
// 如果值大于minDiffCount,则不用再比较了,因为我们要找最小的minDiffCount。
if (currDiffCount >= minDiffCount)
break outer;
}
}
}
if (currDiffCount < minDiffCount) {
// 现在谁差别最小,就先暂时把值赋予给它
minDiffCount = currDiffCount;
result = trainMap.get(bi);
}
}
sb.append(result);
}
ImageIO.write(image, "PNG", new File(RESULT_DIR, sb.toString() + ".png")); return sb.toString();
}

4. 完整代码

package com.clzhang.sample.net;

import java.awt.Color;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.FileFilter;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map; import javax.imageio.ImageIO; import org.apache.http.HttpEntity;
import org.apache.http.HttpResponse;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.client.DefaultHttpClient;
import org.apache.http.protocol.BasicHttpContext; /**
* 这是一个自动识别验证码的程序。要求是简单的验证码,固定大小,固定位置,固定字体;字体纯色最好,如不是需要修改代码。
*
* @author acer
*
*/
public class ImageProcess {
// 存放所有下载验证码的目录
private static final String DOWNLOAD_DIR = "D:\\Work\\helloworld\\resources\\validate\\download"; // 存放已经拆分开的单个数字图片的目录,供比对用
private static final String TRAIN_DIR = "D:\\Work\\helloworld\\resources\\validate\\train"; // 存放比对结果的目录(重新以验证码所含数字命名文件,非常直观)
private static final String RESULT_DIR = "D:\\Work\\helloworld\\resources\\validate\\result"; // 存放比对图片与代表数字的Map
private static Map<BufferedImage, String> trainMap = new HashMap<BufferedImage, String>(); // 图片过滤器,想要什么样的图片,传进名称即可。如:png/gif/.png
static class ImageFileFilter implements FileFilter {
private String postfix = ".png"; public ImageFileFilter(String postfix) {
if(!postfix.startsWith("."))
postfix = "." + postfix; this.postfix = postfix;
} @Override
public boolean accept(File pathname) {
return pathname.getName().toLowerCase().endsWith(postfix);
}
} static {
try {
// 将TRAIN_DIR目录的供比对的图片装载进来
File dir = new File(TRAIN_DIR);
File[] files = dir.listFiles(new ImageFileFilter("png"));
for (File file : files) {
trainMap.put(ImageIO.read(file), file.getName().charAt(0) + "");
}
} catch (IOException e) {
e.printStackTrace();
}
} // 1.下载验证码:将多个验证码图片下载到指定目录,要求各种可能的验证码(单个数字)都应该有,比如:0-9。
private void downloadImage() throws Exception {
HttpClient httpClient = new DefaultHttpClient();
for (int i = 0; i < 10; i++) {
String url = "http://www.yoursite.com/yz.php";
HttpGet getMethod = new HttpGet(url);
try {
HttpResponse response = httpClient.execute(getMethod, new BasicHttpContext());
HttpEntity entity = response.getEntity();
InputStream instream = entity.getContent();
OutputStream outstream = new FileOutputStream(new File(DOWNLOAD_DIR, i + ".png"));
int l = -1;
byte[] tmp = new byte[2048];
while ((l = instream.read(tmp)) != -1) {
outstream.write(tmp);
}
outstream.close();
} finally {
getMethod.releaseConnection();
}
} System.out.println("下载验证码完毕!");
} // 2.去除图像干扰像素(非必须操作,只是可以提高精度而已)。
public static BufferedImage removeInterference(BufferedImage image)
throws Exception {
int width = image.getWidth();
int height = image.getHeight();
for (int x = 0; x < width; ++x) {
for (int y = 0; y < height; ++y) {
if (isFontColor(image.getRGB(x, y))) {
// 如果当前像素是字体色,则检查周边是否都为白色,如都是则删除本像素。
int roundWhiteCount = 0;
if(isWhiteColor(image, x+1, y+1))
roundWhiteCount++;
if(isWhiteColor(image, x+1, y-1))
roundWhiteCount++;
if(isWhiteColor(image, x-1, y+1))
roundWhiteCount++;
if(isWhiteColor(image, x-1, y-1))
roundWhiteCount++;
if(roundWhiteCount == 4) {
image.setRGB(x, y, Color.WHITE.getRGB());
}
}
}
}
return image;
} // 取得指定位置的颜色是否为白色,如果超出边界,返回true
// 本方法是从removeInterference方法中摘取出来的。单独调用本方法无意义。
private static boolean isWhiteColor(BufferedImage image, int x, int y) throws Exception {
if(x < 0 || y < 0) return true;
if(x >= image.getWidth() || y >= image.getHeight()) return true; Color color = new Color(image.getRGB(x, y)); return color.equals(Color.WHITE)?true:false;
} // 3.判断拆分验证码的标准:就是定义验证码中包含的各数字的x、y坐标值,及它们的宽度(width)、高度(height)。
private static List<BufferedImage> splitImage(BufferedImage image) throws Exception {
final int DIGIT_WIDTH = 19;
final int DIGIT_HEIGHT = 17; List<BufferedImage> digitImageList = new ArrayList<BufferedImage>();
digitImageList.add(image.getSubimage(2, 2, DIGIT_WIDTH, DIGIT_HEIGHT));
digitImageList.add(image.getSubimage(20, 2, DIGIT_WIDTH, DIGIT_HEIGHT));
digitImageList.add(image.getSubimage(40, 2, DIGIT_WIDTH, DIGIT_HEIGHT));
digitImageList.add(image.getSubimage(60, 2, DIGIT_WIDTH, DIGIT_HEIGHT)); return digitImageList;
} // 4.判断字体的颜色含义:正常可以用rgb三种颜色加起来表示,字与非字应该有显示的区别,找出来。
private static boolean isFontColor(int colorInt) {
Color color = new Color(colorInt); return color.getRed() + color.getGreen() + color.getBlue() == 340;
} // 5.将下载的验证码图片全部拆分到另一个目录。
public void generateStdDigitImgage() throws Exception {
File dir = new File(DOWNLOAD_DIR);
File[] files = dir.listFiles(new ImageFileFilter("png")); int counter = 0;
for (File file : files) {
BufferedImage image = ImageIO.read(file);
removeInterference(image);
List<BufferedImage> digitImageList = splitImage(image);
for (int i = 0; i < digitImageList.size(); i++) {
BufferedImage bi = digitImageList.get(i);
ImageIO.write(bi, "PNG", new File(TRAIN_DIR, "temp_" + counter++ + ".png"));
}
}
System.out.println("生成供比对的图片完毕,请到目录中手工识别并重命名图片,并删除其它无关图片!");
} // 7.测试判断效果:运行方法,可以调整rgb三值,以达到高的分辨率。
// 目前此方法提供在输出判断结果的同时,在目标目录生成以判断结果命名的新验证码图片,以批量检查效果。
public void testDownloadImage() throws Exception {
File dir = new File(DOWNLOAD_DIR);
File[] files = dir.listFiles(new ImageFileFilter("png")); for (File file : files) {
String validateCode = getValidateCode(file);
System.out.println(file.getName() + "=" + validateCode);
} System.out.println("判断完毕,请到相关目录检查效果!");
} /**
* 8.提供给外界接口调用。
* @param file
* @return
* @throws Exception
*/
public static String getValidateCode(File file) throws Exception {
// 装载图片
BufferedImage image = ImageIO.read(file);
removeInterference(image);
// 拆分图片
List<BufferedImage> digitImageList = splitImage(image); // 循环每一位数字图进行比对
StringBuilder sb = new StringBuilder();
for (BufferedImage digitImage : digitImageList) {
String result = "";
int width = digitImage.getWidth();
int height = digitImage.getHeight(); // 最小的不同次数(初始值为总像素),值越小就越像。
int minDiffCount = width * height;
for (BufferedImage bi : trainMap.keySet()) {
// 对每一位数字图与字典中的进行按像素比较
int currDiffCount = 0; // 按像素比较不同的次数
outer : for (int x = 0; x < width; ++x) {
for (int y = 0; y < height; ++y) {
if (isFontColor(digitImage.getRGB(x, y)) != isFontColor(bi.getRGB(x, y))) {
// 按像素比较如果不同,则加1;
currDiffCount++;
// 如果值大于minDiffCount,则不用再比较了,因为我们要找最小的minDiffCount。
if (currDiffCount >= minDiffCount)
break outer;
}
}
}
if (currDiffCount < minDiffCount) {
// 现在谁差别最小,就先暂时把值赋予给它
minDiffCount = currDiffCount;
result = trainMap.get(bi);
}
}
sb.append(result);
}
ImageIO.write(image, "PNG", new File(RESULT_DIR, sb.toString() + ".png")); return sb.toString();
} public static void main(String[] args) throws Exception {
ImageProcess ins = new ImageProcess(); // 第1步,下载验证码到DOWNLOAD_DIR
// ins.downloadImage(); // 第2步,去除干扰的像素
// File dir = new File(DOWNLOAD_DIR);
// File[] files = dir.listFiles(new ImageFileFilter("png"));
// for (File file : files) {
// BufferedImage image = ImageIO.read(file);
// removeInterference(image);
// ImageIO.write(image, "PNG", file);
// System.out.println("成功处理:" + file.getName());
// } // 第3步,判断拆分验证码的标准
// 通过PhotoShop打开验证码并放大观察,我这儿的结果参考splitImage()方法中的变量 // 第4步,判断字体的颜色含义
// 通过PhotoShop打开验证码并放大观察,我这儿字体颜色的rgb总值加起来在340。因为是纯色。 // 第5步,将下载的验证码图片全部拆分到TRAIN_DIR目录。
// ins.generateStdDigitImgage(); // 第6步,手工命名文件
// 打开资源管理器,选择TRAIN_DIR,分别找出显示0-9数字的文件,以它的名字重新命名,删除其它所有的。 // 第7步,测试判断效果,运行后打开RESULT_DIR,检查文件名是否与验证码内容一致。
ins.testDownloadImage(); // 第8步,提供给外界接口调用。
// String validateCode = ImageProcess.getValidateCode(new File(DOWNLOAD_DIR, "0.png"));
// System.out.println("验证码为:" + validateCode);
}
}

Java简单验证码的识别的更多相关文章

  1. 简单验证码的识别:Bitmap类的使用

    验证码的智能识别是一项比较复杂的工作,甚至需要掌握点图像学的知识. 当然对于写程序的来说不用那么深入,只需要掌握几个常规步骤就行了. 验证码图像识别步骤:1.获取图像 2.清除边框 3.灰度处理 4. ...

  2. Java简单验证码原理(源代码+步骤操作)

    本文章一共分为五个步骤,具体操作流程如下: 一.新建名为:CheckCodeServlet的servlet类; 二.复制以下代码到新建的CheckCodeServlet类中,修改自己的包名: pack ...

  3. java简单验证码生成程序

    下面的函数,返回的字符串就是所需验证码 public String id(){ Random ra =new Random(); st=""; String [] w= {&quo ...

  4. python简单验证码识别

    在学习python通过接口自动登录网站时,用户名密码.cookies.headers都好解决但是在碰到验证码这个时就有点棘手了:于是通过网上看贴,看官网完成了对简单验证码的识别,如果是复杂的请看大神的 ...

  5. 开发工具类API调用的代码示例合集:六位图片验证码生成、四位图片验证码生成、简单验证码识别等

    以下示例代码适用于 www.apishop.net 网站下的API,使用本文提及的接口调用代码示例前,您需要先申请相应的API服务. 六位图片验证码生成:包括纯数字.小写字母.大写字母.大小写混合.数 ...

  6. JAVA爬虫---验证码识别技术(一)

    Python中有专门的图像处理技术比如说PIL,可以对验证码一类的图片进行二值化处理,然后对图片进行分割,进行像素点比较得到图片中的数字.这种方案对验证码的处理相对较少,运用相对普遍,很多验证码图片可 ...

  7. 简单验证码识别(matlab)

    简单验证码识别(matlab) 验证码识别, matlab 昨天晚上一个朋友给我发了一些验证码的图片,希望能有一个自动识别的程序. 1474529971027.jpg 我看了看这些样本,发现都是很规则 ...

  8. 基于TensorFlow的简单验证码识别

    TensorFlow 可以用来实现验证码识别的过程,这里识别的验证码是图形验证码,首先用标注好的数据来训练一个模型,然后再用模型来实现这个验证码的识别. 生成验证码 首先生成验证码,这里使用 Pyth ...

  9. Python3 简单验证码识别思路及实例

    1.介绍 在爬虫中经常会遇到验证码识别的问题,现在的验证码大多分计算验证码.滑块验证码.识图验证码.语音验证码等四种.本文就是识图验证码,识别的是简单的验证码,要想让识别率更高, 识别的更加准确就需要 ...

随机推荐

  1. GeSHi——通用语法高亮显示

    Examples Category Examples Views ActionScript 2 46173 Ada 3 27881 Apache configuration 2 40029 Apple ...

  2. [Algorithm] Find first missing positive integer

    Given an array of integers, find the first missing positive integer in linear time and constant spac ...

  3. Pinger2

    import java.io.IOException;import java.io.InputStreamReader;import java.io.LineNumberReader;import j ...

  4. 在Foreda8上安装libaio-0.3.105-2.i386.rpm

    libaio-0.3.105-2.i386.rpm是安装MySql必须的包,可以从这里下载:http://pan.baidu.com/share/link?shareid=2348086735& ...

  5. (算法)两个有序数组的第k大的数

    题目: 有两个数组A和B,假设A和B已经有序(从大到小),求A和B数组中所有数的第K大. 思路: 1.如果k为2的次幂,且A,B 的大小都大于k,那么 考虑A的前k/2个数和B的前k/2个数, 如果A ...

  6. windowsclient开发--duilib显示html

    今天与大家分享的就是duilib这个库中,怎样做到显示html的. 有些控件,如Text能够通过showhtml函数来设置是否显示html富文本. 加粗 {b}加粗{/b} 斜体 {i}斜体{/i} ...

  7. 如何安装Tomcat

    1 请确认已经安装了JRE或JDK并配置好了环境变量,关于如何配置环境变量,参考我的另一篇文章"WIN7如何配置java环境变量,运行环境.doc" 2 用记事本打开bin目录下的 ...

  8. JavaBean(web基础学习笔记十二)

    一.JavaBean简介 JavaBean是使用Java语言开发的一个可重用的组件,在JSP的开发中可以使用JavaBean减少重复代码,使整个JSP代码的开发更简洁.JSP搭配JavaBean来使用 ...

  9. iOS正則表達式(一)

    什么是正則表達式? 正則表達式是对字符串操作的一种逻辑公式. 作用? 在iOS开发中我们通常使用正則表達式来匹配给定的字符串是否符合我们的业务逻辑,比方说用户注冊帐号仅仅能是手机号或者邮箱等.我们还能 ...

  10. gdb 读取elf

    在make file中找到ld,然后将其换成 gdb, 如本例中LINKER = /usr/cygnus/xscale-020523/H-sparc-sun-solaris2.5/bin/xscale ...