SPOJ8791 DYNALCA LCT

考虑\(LCT\)
不难发现,我们不需要换根...
对于操作\(1\),\(splay(u)\)然后连虚边即可
对于操作\(3\),我们可以先\(access(u)\),然后再\(access(v)\),然后查最后一个虚边变实边的点
对于操作\(2\)
可以选择\(access(u), splay(u)\),然后从\(u\)所在的\(splay\)中删去\(u\)点
也可以选择\(access(u), access(v), splay(u)\),这时,边\((u, v)\)成为虚边,十分好删除
复杂度\(O(n \log n)\)
版本1:
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --)
#define gc getchar
inline int read() {
int p = 0, w = 1; char c = gc();
while(c > '9' || c < '0') { if(c == '-') w = -1; c = gc(); }
while(c >= '0' && c <= '9') p = p * 10 + c - '0', c = gc();
return p * w;
}
const int sid = 1e5 + 5;
int n, m;
char s[sid];
int son[sid][2], fa[sid], pra[sid];
#define ls(o) son[(o)][0]
#define rs(o) son[(o)][1]
inline bool isrc(int o) { return rs(fa[o]) == o; }
inline bool isr(int o) { return !fa[o] || (ls(fa[o]) != o && rs(fa[o]) != o); }
inline void rotate(int o) {
int f = fa[o], g = fa[f];
int ro = isrc(o), rf = isrc(f), p = son[o][ro ^ 1];
if(!isr(f)) son[g][rf] = o; son[o][ro ^ 1] = f; son[f][ro] = p;
fa[p] = f; fa[f] = o; fa[o] = g;
}
inline void splay(int o) {
while(!isr(o)) {
int f = fa[o];
if(!isr(f)) rotate(isrc(f) == isrc(o) ? f : o);
rotate(o);
}
}
int lca = 0;
inline void access(int o) {
int lst = 0;
while(o) {
splay(o); rs(o) = lst;
lca = lst = o; o = fa[o];
}
}
int main() {
n = read(); m = read();
rep(i, 1, m) {
int u, v;
scanf("%s", s);
if(s[1] == 'i') {
u = read(); v = read();
splay(u); pra[u] = v; fa[u] = v;
}
else if(s[1] == 'c') {
u = read(); v = read();
access(u); access(v);
printf("%d\n", lca);
}
else if(s[1] == 'u') {
u = read();
access(u); access(pra[u]);
splay(u); fa[u] = 0;
}
}
return 0;
}
版本\(2\):
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --)
#define gc getchar
inline int read() {
int p = 0, w = 1; char c = gc();
while(c > '9' || c < '0') { if(c == '-') w = -1; c = gc(); }
while(c >= '0' && c <= '9') p = p * 10 + c - '0', c = gc();
return p * w;
}
const int sid = 1e5 + 5;
int n, m;
char s[sid];
int son[sid][2], fa[sid], pra[sid];
#define ls(o) son[(o)][0]
#define rs(o) son[(o)][1]
inline bool isrc(int o) { return rs(fa[o]) == o; }
inline bool isr(int o) { return !fa[o] || (ls(fa[o]) != o && rs(fa[o]) != o); }
inline void rotate(int o) {
int f = fa[o], g = fa[f];
int ro = isrc(o), rf = isrc(f), p = son[o][ro ^ 1];
if(!isr(f)) son[g][rf] = o; son[o][ro ^ 1] = f; son[f][ro] = p;
fa[p] = f; fa[f] = o; fa[o] = g;
}
inline void splay(int o) {
while(!isr(o)) {
int f = fa[o];
if(!isr(f)) rotate(isrc(f) == isrc(o) ? f : o);
rotate(o);
}
}
int lca = 0;
inline void access(int o) {
int lst = 0;
while(o) {
splay(o); rs(o) = lst;
lca = lst = o; o = fa[o];
}
}
int main() {
n = read(); m = read();
rep(i, 1, m) {
int u, v;
scanf("%s", s);
if(s[1] == 'i') {
u = read(); v = read();
splay(u); pra[u] = v; fa[u] = v;
}
else if(s[1] == 'c') {
u = read(); v = read();
access(u); access(v);
printf("%d\n", lca);
}
else if(s[1] == 'u') {
u = read();
access(u); splay(u);
ls(u) = fa[ls(u)] = 0;
}
}
return 0;
}
SPOJ8791 DYNALCA LCT的更多相关文章
- spoj DYNALCA - Dynamic LCA
http://www.spoj.com/problems/DYNALCA/ 此题link.cut要求不能换根,当然也保证link时其中一个点必定已经是根. 方法: void link(Node *x, ...
- 一堆LCT板子
搞了一上午LCT,真是累死了-- 以前总觉得LCT高大上不好学不好打,今天打了几遍感觉还可以嘛= =反正现在的水平应付不太难的LCT题也够用了,就这样好了,接下来专心搞网络流. 话说以前一直YY不出来 ...
- 动态树之LCT(link-cut tree)讲解
动态树是一类要求维护森林的连通性的题的总称,这类问题要求维护某个点到根的某些数据,支持树的切分,合并,以及对子树的某些操作.其中解决这一问题的某些简化版(不包括对子树的操作)的基础数据结构就是LCT( ...
- 在此为LCT开一个永久的坑
其实我连splay都还不怎么会. 今天先抄了黄学长的bzoj2049,以后一定要把它理解了. 写LCT怎么能不%数据结构大神yeweining呢?%%%chrysanthemums %%%切掉大森林 ...
- 【BZOJ2157】旅游 LCT
模板T,SB的DMoon..其实样例也是中国好样例...一开始不会复制,yangyang:找到“sample input”按住shift,按page down.... #include <ios ...
- 【BZOJ3669】[Noi2014]魔法森林 LCT
终于不是裸的LCT了...然而一开始一眼看上去这是kruskal..不对,题目要求1->n的路径上的每个点的两个最大权值和最小,这样便可以用LCT来维护一个最小生成路(瞎编的...),先以a为关 ...
- 【BZOJ1180】: [CROATIAN2009]OTOCI & 2843: 极地旅行社 LCT
竟然卡了我....忘记在push_down先下传父亲的信息了....还有splay里for():卡了我10min,但是双倍经验还是挺爽的,什么都不用改. 感觉做的全是模板题,太水啦,不能这么水了... ...
- 【BZOJ3282】Tree LCT
1A爽,感觉又对指针重怀信心了呢= =,模板题,注意单点修改时splay就好,其实按吾本意是没写的也A了,不过应该加上能更好维护平衡性. ..还是得加上好= = #include <iostre ...
- BZOJ2888 资源运输(LCT启发式合并)
这道题目太神啦! 我们考虑他的每一次合并操作,为了维护两棵树合并后树的重心,我们只好一个一个的把节点加进去.那么这样一来看上去似乎就是一次操作O(nlogn),但是我们拥有数据结构的合并利器--启发式 ...
随机推荐
- 关于Python编码问题小记
Python编码问题小记: 引子: 最近在复习redis,当我在获取redis的key的时候,redis 存储英文和汉字下面这个样子的,我知道汉字是用16进制的UTF-8编码了,然后突然很想搞清楚字符 ...
- zTree静态树与动态树的用法——(七)
0.[简介] zTree 是利用 JQuery 的核心代码,实现一套能完成大部分常用功能的 Tree 插件 兼容 IE.FireFox.Chrome 等浏览器 在一个页面内可同时生成多个 Tree 实 ...
- 【洛谷】P1445 没占到1444的愤怒
继续洛谷刷水日常,突然遇到一道不是很水的题目…… https://www.luogu.org/problem/show?pid=1445 题意:给定n(1<=n<=1000000),求方程 ...
- Next Permutation & Previous Permutation
Next Permutation Given a list of integers, which denote a permutation. Find the next permutation in ...
- CentOS时区GMT修改为CST
GMT:格林尼标准时间 北京时间=GMT时间+8小时 [root@sa~]# date -R 查看目前服务器的时间标准 [root@sa~]# vi /etc/sysconfig/clock 将ZON ...
- Git的安装和使用(Linux)【转】
转自:http://my.oschina.net/fhd/blog/354685 Git诞生于Linux平台并作为版本控制系统率先服务于Linux内核,因此在Linux上安装Git是非常方便的.可以通 ...
- TcxScheduler的使用
TcxScheduler有两种工作模式: 一.非绑定模式 非绑定模式下,数据被存储在文件系统中.要让scheduler工作在非绑定模式下,应使TcxScheduler.Storage属性绑定到TcxS ...
- 22 Gobs of data 设计和使用采集数据的包
Gobs of data 24 March 2011 Introduction To transmit a data structure across a network or to store it ...
- java基础39 增强for循环(也叫foreach循环)
增强for循环是jdk1.5出现的新功能 1.增强for循环的作用 简化了迭代器的书写格式(注意:增强for循环底层还是使用了迭代器遍历) 2.增强for循环的格式 for(数据类型 变量名:遍历的目 ...
- asterisk各种报错
1.控制台打印出: Got SIP response "Temporarily Unavailable" back from 210.13.87.110:5060 造成原因:在 ...