[PKUWC 2018]随机算法
Description
给定一张有 \(n\) 个点 \(m\) 条边的无向图,生成 \(1\sim n\) 的全排列,假设一个排列是 \(p\) , \(S\) 是当前最大独立集;如果 \(S\cup {p_i}\) 是独立集就令 \(S=S\cup {p_i}\) ;
求这 \(n!\) 个独立集为最大独立集的概率,答案对 \(998244353\) 取模。
\(1\leq n\leq 20\)
Solution
我们记 \(mx_{i,j}\) 表示排好序的点以及这些点周围的的点的状态为 \(i\) ,有 \(j\) 个点还未选入序列,其中的最大独立集内点数最大值; \(f_{i,j}\) 表示该状态下的排列个数。
转移就是考虑这一位是将状态内的未选择的点排入排列内或者是重新在状态外再选点。
时间复杂度是 \(O(2^n\times n^2)\) ,并不满。
Code
#include <bits/stdc++.h>
#define lowbit(x) ((x)&(-x))
using namespace std;
const int N = 20+5, SIZE = (1<<20)+5, yzh = 998244353;
int n, m, u, v, sta[N], bin[N], f[SIZE][N], mx[SIZE][N], cnt[SIZE], inv[N];
void work() {
scanf("%d%d", &n, &m); bin[0] = inv[1]= 1;
for (int i = 1; i <= n; i++) bin[i] = bin[i-1]<<1;
for (int i = 2; i <= n; i++) inv[i] = -1ll*yzh/i*inv[yzh%i]%yzh;
for (int i = 1; i <= bin[n]; i++) cnt[i] = cnt[i-lowbit(i)]+1;
for (int i = 1; i <= m; i++) {
scanf("%d%d", &u, &v);
sta[u-1] |= bin[v-1]; sta[v-1] |= bin[u-1];
}
f[0][0] = 1;
for (int i = 0; i < bin[n]; i++)
for (int j = n; j >= 0; j--)
if (f[i][j]) {
if (j) {
if (mx[i][j-1] == mx[i][j]) (f[i][j-1] += 1ll*f[i][j]*j%yzh) %= yzh;
else if (mx[i][j-1] < mx[i][j]) mx[i][j-1] = mx[i][j], f[i][j-1] = 1ll*f[i][j]*j%yzh;
}
for (int k = 0; k < n; k++)
if (!(bin[k]&i)) {
int S = (i|sta[k]|bin[k]), t = cnt[sta[k]]-cnt[sta[k]&i];
if (mx[S][j+t] < mx[i][j]+1) mx[S][j+t] = mx[i][j]+1, f[S][j+t] = f[i][j];
else if (mx[S][j+t] == mx[i][j]+1) (f[S][j+t] += f[i][j]) %= yzh;
}
}
int ans = f[bin[n]-1][0];
for (int i = 1; i <= n; i++) ans = 1ll*ans*inv[i]%yzh;
printf("%d\n", (ans+yzh)%yzh);
}
int main() {work(); return 0; }
[PKUWC 2018]随机算法的更多相关文章
- [PKUWC 2018]随机游走
Description 题库链接 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次询问给定一个集合 \(S\) ...
- LOJ #2540. 「PKUWC 2018」随机算法(概率dp)
题意 LOJ #2540. 「PKUWC 2018」随机算法 题解 朴素的就是 \(O(n3^n)\) dp 写了一下有 \(50pts\) ... 大概就是每个点有三个状态 , 考虑了但不在独立集中 ...
- LOJ #2542. 「PKUWC 2018」随机游走(最值反演 + 树上期望dp + FMT)
写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT (不是每个人都有那么厉害啊 , 我好菜啊) 而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT ...
- [PKUWC2018]随机算法
题意:https://loj.ac/problem/2540 给定一个图(n<=20),定义一个求最大独立集的随机化算法 产生一个排列,依次加入,能加入就加入 求得到最大独立集的概率 loj25 ...
- PKUWC 2018游记
PKUWC 2018游记 标签: Day\([-inf,0)\) 停课之后一直各种浪的飞起,考试rank20+,不搞颓但是学习很没有状态.还经常带着耳机被谢总抓了好几次,然后被拉过去谈话了好几次... ...
- A Dream (PKUWC 2018)
A Dream (PKUWC 2018) 这是一个梦. 从没有几分节日气氛的圣诞,做到了大雪纷飞的数九寒天. 忘了罢! 不记得时间,不记得地点.随着记忆的褪去,一切也只会不复存在. Day-34? D ...
- $PkuWc\ 2018$ 酱油记
PkuWc 2018 酱油记 1. Day -INF 又停了一个月课...... 感觉这个月的收获还是蛮大的,刚来的时候还只会线段树,到现在LCT都学了... 这个月不停在考试,自己考试技巧也提升了不 ...
- 【洛谷5492】[PKUWC2018] 随机算法(状压DP)
点此看题面 大致题意: 用随机算法求一张图的最大独立集:每次随机一个排列,从前到后枚举排列中的点,如果当前点加入点集中依然是独立集,就将当前点加入点集中,最终得到的点集就是最大独立集.求这个随机算法的 ...
- 微信红包中使用的技术:AA收款+随机算法
除夕夜你领到红包了吗?有的说“我领了好几K!”“我领了几W!” 土豪何其多,苦逼也不少!有的说“我出来工作了,没压岁钱了,还要发红包”.那您有去抢微信红包吗?微信群中抢“新年红包”春节爆红.618微信 ...
随机推荐
- 基于CORS的GeoServer跨域访问策略
GeoServer的跨域访问问题,有多种解决方法,本文介绍一种基于CORS的GeoServer跨域访问方法. CORS简介 CORS是一个W3C标准,全称是"跨域资源共享"(Cro ...
- 一起学习MVC(1)初步了解MVC
MVC 即模型视图控制器(Model View Controller) 利于团队开发.便于管理与维护.代码易读性强.未来的主流开发框架结构. 当然,缺点也显而易见,与传统开发框架相比有很大的不 ...
- jvm lock低性能分析
日志平台client面临着输出日志的问题.为了避免干扰业务系统,我们采用异步输出的方式.这实际上相当于一个多生产者-单消费者的多线程模型.传统的方式是使用同步加锁的方式,但是这种方式不够高效.之前 钟 ...
- linux中权限
$ ls -l /bin/bash -rwxr-xr-x 1 root wheel 430540 Dec 23 18:27 /bin/bash -rwxr-xr-x 包含该特殊文件的权限的符号表示.该 ...
- Java中的String,StringBuilder,StringBuffer的区别
这三个类之间的区别主要是在两个方面,即运行速度和线程安全这两方面. 首先说运行速度,或者说是执行速度,在这方面运行速度快慢为:StringBuilder > StringBuffer > ...
- python scapy 网卡发包
from scapy.all import * pkt = Ether(src='11:22:33:44:55:77', dst='11:22:33:44:55:66')/ARP(op="w ...
- Windows 环境下使用强大的wget工具
安装 下载[http://www.interlog.com/~tcharron/wgetwin.html] 解压到目录 比如我解压到D:\Tool\wget 添加wget环境变量,这样使用就更方便了, ...
- OpenSL的使用
#include <jni.h> #include <string> #include <SLES/OpenSLES.h> #include <SLES/Op ...
- 【算法】Matrix - Tree 矩阵树定理 & 题目总结
最近集中学习了一下矩阵树定理,自己其实还是没有太明白原理(证明)类的东西,但想在这里总结一下应用中的一些细节,矩阵树定理的一些引申等等. 首先,矩阵树定理用于求解一个图上的生成树个数.实现方式是:\( ...
- jzoj5805
#include<bits/stdc++.h> using namespace std; int x,n,pp,ct[10000]; long double f[210][(1<&l ...