[PKUWC 2018]随机算法
Description
给定一张有 \(n\) 个点 \(m\) 条边的无向图,生成 \(1\sim n\) 的全排列,假设一个排列是 \(p\) , \(S\) 是当前最大独立集;如果 \(S\cup {p_i}\) 是独立集就令 \(S=S\cup {p_i}\) ;
求这 \(n!\) 个独立集为最大独立集的概率,答案对 \(998244353\) 取模。
\(1\leq n\leq 20\)
Solution
我们记 \(mx_{i,j}\) 表示排好序的点以及这些点周围的的点的状态为 \(i\) ,有 \(j\) 个点还未选入序列,其中的最大独立集内点数最大值; \(f_{i,j}\) 表示该状态下的排列个数。
转移就是考虑这一位是将状态内的未选择的点排入排列内或者是重新在状态外再选点。
时间复杂度是 \(O(2^n\times n^2)\) ,并不满。
Code
#include <bits/stdc++.h>
#define lowbit(x) ((x)&(-x))
using namespace std;
const int N = 20+5, SIZE = (1<<20)+5, yzh = 998244353;
int n, m, u, v, sta[N], bin[N], f[SIZE][N], mx[SIZE][N], cnt[SIZE], inv[N];
void work() {
scanf("%d%d", &n, &m); bin[0] = inv[1]= 1;
for (int i = 1; i <= n; i++) bin[i] = bin[i-1]<<1;
for (int i = 2; i <= n; i++) inv[i] = -1ll*yzh/i*inv[yzh%i]%yzh;
for (int i = 1; i <= bin[n]; i++) cnt[i] = cnt[i-lowbit(i)]+1;
for (int i = 1; i <= m; i++) {
scanf("%d%d", &u, &v);
sta[u-1] |= bin[v-1]; sta[v-1] |= bin[u-1];
}
f[0][0] = 1;
for (int i = 0; i < bin[n]; i++)
for (int j = n; j >= 0; j--)
if (f[i][j]) {
if (j) {
if (mx[i][j-1] == mx[i][j]) (f[i][j-1] += 1ll*f[i][j]*j%yzh) %= yzh;
else if (mx[i][j-1] < mx[i][j]) mx[i][j-1] = mx[i][j], f[i][j-1] = 1ll*f[i][j]*j%yzh;
}
for (int k = 0; k < n; k++)
if (!(bin[k]&i)) {
int S = (i|sta[k]|bin[k]), t = cnt[sta[k]]-cnt[sta[k]&i];
if (mx[S][j+t] < mx[i][j]+1) mx[S][j+t] = mx[i][j]+1, f[S][j+t] = f[i][j];
else if (mx[S][j+t] == mx[i][j]+1) (f[S][j+t] += f[i][j]) %= yzh;
}
}
int ans = f[bin[n]-1][0];
for (int i = 1; i <= n; i++) ans = 1ll*ans*inv[i]%yzh;
printf("%d\n", (ans+yzh)%yzh);
}
int main() {work(); return 0; }
[PKUWC 2018]随机算法的更多相关文章
- [PKUWC 2018]随机游走
Description 题库链接 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次询问给定一个集合 \(S\) ...
- LOJ #2540. 「PKUWC 2018」随机算法(概率dp)
题意 LOJ #2540. 「PKUWC 2018」随机算法 题解 朴素的就是 \(O(n3^n)\) dp 写了一下有 \(50pts\) ... 大概就是每个点有三个状态 , 考虑了但不在独立集中 ...
- LOJ #2542. 「PKUWC 2018」随机游走(最值反演 + 树上期望dp + FMT)
写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT (不是每个人都有那么厉害啊 , 我好菜啊) 而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT ...
- [PKUWC2018]随机算法
题意:https://loj.ac/problem/2540 给定一个图(n<=20),定义一个求最大独立集的随机化算法 产生一个排列,依次加入,能加入就加入 求得到最大独立集的概率 loj25 ...
- PKUWC 2018游记
PKUWC 2018游记 标签: Day\([-inf,0)\) 停课之后一直各种浪的飞起,考试rank20+,不搞颓但是学习很没有状态.还经常带着耳机被谢总抓了好几次,然后被拉过去谈话了好几次... ...
- A Dream (PKUWC 2018)
A Dream (PKUWC 2018) 这是一个梦. 从没有几分节日气氛的圣诞,做到了大雪纷飞的数九寒天. 忘了罢! 不记得时间,不记得地点.随着记忆的褪去,一切也只会不复存在. Day-34? D ...
- $PkuWc\ 2018$ 酱油记
PkuWc 2018 酱油记 1. Day -INF 又停了一个月课...... 感觉这个月的收获还是蛮大的,刚来的时候还只会线段树,到现在LCT都学了... 这个月不停在考试,自己考试技巧也提升了不 ...
- 【洛谷5492】[PKUWC2018] 随机算法(状压DP)
点此看题面 大致题意: 用随机算法求一张图的最大独立集:每次随机一个排列,从前到后枚举排列中的点,如果当前点加入点集中依然是独立集,就将当前点加入点集中,最终得到的点集就是最大独立集.求这个随机算法的 ...
- 微信红包中使用的技术:AA收款+随机算法
除夕夜你领到红包了吗?有的说“我领了好几K!”“我领了几W!” 土豪何其多,苦逼也不少!有的说“我出来工作了,没压岁钱了,还要发红包”.那您有去抢微信红包吗?微信群中抢“新年红包”春节爆红.618微信 ...
随机推荐
- tomcat监听activemq jms配置
当从webservice接收到信息的时候,消息生产者producer立刻把收到的消息放入到jms里面,消费者cusomer这时要设置一个监听,当生产者发送消息时,只要消息被发出来,消费者就会接收到消息 ...
- Autofac创建实例的方法总结[转]
1.InstancePerDependency 对每一个依赖或每一次调用创建一个新的唯一的实例.这也是默认的创建实例的方式. 官方文档解释:Configure the component so tha ...
- Asp.Net Web Api中使用Swagger
关于swagger 设计是API开发的基础.Swagger使API设计变得轻而易举,为开发人员.架构师和产品所有者提供了易于使用的工具. 官方网址:https://swagger.io/solutio ...
- BitAdminCore框架应用篇:(四)核心套件querySuite按钮功能
索引 NET Core应用框架之BitAdminCore框架应用篇系列 框架演示:http://bit.bitdao.cn 框架源码:https://github.com/chenyinxin/coo ...
- Word发表blog格式模板
一级标题(黑体,二号,加粗) 二级标题(黑体,三号,加粗) 正文(宋体+Times New Roman,小四) 注意事项: 序号列表"不连续"时,不得使用自动序号 连续(word连 ...
- const的详解
1.const的成员变量 常成员变量的值不能被更新,将在构造函数时候进行初始化 2.const的成员函数 常成员函数只能调用常成员函数,常成员函数不能修改任何成员变量的数值 3.const的成员对象 ...
- udid iphone6 获取
http://www.udidregistration.org/how-to-find-udid-of-iphone-6.html
- php中strpos()函数
1,strpos()函数 mixed strops(]) 返回needle在haystack中首次出现的数字位置,从0开始查找,区分大小写. 参数:haystack,在该字符串中进行查找. needl ...
- robot_framework Authorization 解决登录超时问题(token)
写rf的接口时,遇到总是报错提示: 登录超时 解决过程: 1 . 通过对同一个接口进行手机抓包对比,发现该接口请求时,多了Authorization,需要HTTP Basic Authenticati ...
- 3.修改更新源sources.list,提高软件下载安装速度(2017.04.05)
2017年4月5日再次更新源 1.切换到root用户(如果已经是root用户就直接看第二步) dnt@HackerKali:~$ su 密码: 2.用文本编辑器打开sources.list,手动添加下 ...