[PKUWC 2018]随机算法
Description
给定一张有 \(n\) 个点 \(m\) 条边的无向图,生成 \(1\sim n\) 的全排列,假设一个排列是 \(p\) , \(S\) 是当前最大独立集;如果 \(S\cup {p_i}\) 是独立集就令 \(S=S\cup {p_i}\) ;
求这 \(n!\) 个独立集为最大独立集的概率,答案对 \(998244353\) 取模。
\(1\leq n\leq 20\)
Solution
我们记 \(mx_{i,j}\) 表示排好序的点以及这些点周围的的点的状态为 \(i\) ,有 \(j\) 个点还未选入序列,其中的最大独立集内点数最大值; \(f_{i,j}\) 表示该状态下的排列个数。
转移就是考虑这一位是将状态内的未选择的点排入排列内或者是重新在状态外再选点。
时间复杂度是 \(O(2^n\times n^2)\) ,并不满。
Code
#include <bits/stdc++.h>
#define lowbit(x) ((x)&(-x))
using namespace std;
const int N = 20+5, SIZE = (1<<20)+5, yzh = 998244353;
int n, m, u, v, sta[N], bin[N], f[SIZE][N], mx[SIZE][N], cnt[SIZE], inv[N];
void work() {
scanf("%d%d", &n, &m); bin[0] = inv[1]= 1;
for (int i = 1; i <= n; i++) bin[i] = bin[i-1]<<1;
for (int i = 2; i <= n; i++) inv[i] = -1ll*yzh/i*inv[yzh%i]%yzh;
for (int i = 1; i <= bin[n]; i++) cnt[i] = cnt[i-lowbit(i)]+1;
for (int i = 1; i <= m; i++) {
scanf("%d%d", &u, &v);
sta[u-1] |= bin[v-1]; sta[v-1] |= bin[u-1];
}
f[0][0] = 1;
for (int i = 0; i < bin[n]; i++)
for (int j = n; j >= 0; j--)
if (f[i][j]) {
if (j) {
if (mx[i][j-1] == mx[i][j]) (f[i][j-1] += 1ll*f[i][j]*j%yzh) %= yzh;
else if (mx[i][j-1] < mx[i][j]) mx[i][j-1] = mx[i][j], f[i][j-1] = 1ll*f[i][j]*j%yzh;
}
for (int k = 0; k < n; k++)
if (!(bin[k]&i)) {
int S = (i|sta[k]|bin[k]), t = cnt[sta[k]]-cnt[sta[k]&i];
if (mx[S][j+t] < mx[i][j]+1) mx[S][j+t] = mx[i][j]+1, f[S][j+t] = f[i][j];
else if (mx[S][j+t] == mx[i][j]+1) (f[S][j+t] += f[i][j]) %= yzh;
}
}
int ans = f[bin[n]-1][0];
for (int i = 1; i <= n; i++) ans = 1ll*ans*inv[i]%yzh;
printf("%d\n", (ans+yzh)%yzh);
}
int main() {work(); return 0; }
[PKUWC 2018]随机算法的更多相关文章
- [PKUWC 2018]随机游走
Description 题库链接 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次询问给定一个集合 \(S\) ...
- LOJ #2540. 「PKUWC 2018」随机算法(概率dp)
题意 LOJ #2540. 「PKUWC 2018」随机算法 题解 朴素的就是 \(O(n3^n)\) dp 写了一下有 \(50pts\) ... 大概就是每个点有三个状态 , 考虑了但不在独立集中 ...
- LOJ #2542. 「PKUWC 2018」随机游走(最值反演 + 树上期望dp + FMT)
写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT (不是每个人都有那么厉害啊 , 我好菜啊) 而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT ...
- [PKUWC2018]随机算法
题意:https://loj.ac/problem/2540 给定一个图(n<=20),定义一个求最大独立集的随机化算法 产生一个排列,依次加入,能加入就加入 求得到最大独立集的概率 loj25 ...
- PKUWC 2018游记
PKUWC 2018游记 标签: Day\([-inf,0)\) 停课之后一直各种浪的飞起,考试rank20+,不搞颓但是学习很没有状态.还经常带着耳机被谢总抓了好几次,然后被拉过去谈话了好几次... ...
- A Dream (PKUWC 2018)
A Dream (PKUWC 2018) 这是一个梦. 从没有几分节日气氛的圣诞,做到了大雪纷飞的数九寒天. 忘了罢! 不记得时间,不记得地点.随着记忆的褪去,一切也只会不复存在. Day-34? D ...
- $PkuWc\ 2018$ 酱油记
PkuWc 2018 酱油记 1. Day -INF 又停了一个月课...... 感觉这个月的收获还是蛮大的,刚来的时候还只会线段树,到现在LCT都学了... 这个月不停在考试,自己考试技巧也提升了不 ...
- 【洛谷5492】[PKUWC2018] 随机算法(状压DP)
点此看题面 大致题意: 用随机算法求一张图的最大独立集:每次随机一个排列,从前到后枚举排列中的点,如果当前点加入点集中依然是独立集,就将当前点加入点集中,最终得到的点集就是最大独立集.求这个随机算法的 ...
- 微信红包中使用的技术:AA收款+随机算法
除夕夜你领到红包了吗?有的说“我领了好几K!”“我领了几W!” 土豪何其多,苦逼也不少!有的说“我出来工作了,没压岁钱了,还要发红包”.那您有去抢微信红包吗?微信群中抢“新年红包”春节爆红.618微信 ...
随机推荐
- [LeetCode 题解]: Binary Tree Preorder Traversal
前言 [LeetCode 题解]系列传送门: http://www.cnblogs.com/double-win/category/573499.html 1.题目描述 Given a bi ...
- Abp mvc angular 添加视图
在LawAndRegulation项目中添加导航路由(Abp添加菜单)对应的客户端页面. 创建文件 客户端页面在Abp模板项目中默认存放在Abp/Main/views文件夹下,在项目中我们创建属于字典 ...
- Java开发 小工具累计
array to list Integer[] spam = new Integer[] { 1, 2, 3 }; List<Integer> rlt = Arrays.asList(sp ...
- disruptor调优方法
翻译自disruptor在github上的文档,https://github.com/LMAX-Exchange/disruptor/wiki/Getting-Started Basic Tuning ...
- 程序媛计划——python socket通信
定义 socket 是进程间的一种通信方式,可以实现不同主机间的数据传输 #写服务期端程序server.py #实现服务器向客户端连接 #!/usr/bin/env python #coding:ut ...
- “全栈2019”Java多线程第二十二章:饥饿线程(Starvation)详解
难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java多 ...
- 一,memcached的基本概念
1,memcached的基本概念 memcached是一个高效的分布式内存对象缓存系统,它可以支持把各种php的数据(array,对象,基本数据类型)放入到它管理的内存中.简单的说,memcached ...
- vue 组件之间的数据传递
父组件传数据给子组件 创建数据 获取json数据 子组件传数据给父组件 1. 子组件使用$emit监听数据 getAreaValues(){ this.$emit('getAreaValues', { ...
- java命令行编译和运行引用jar包的文件
经常遇到需要添加第三方jar文件的情况.在命令行状态下要加载外部的jar文件非常麻烦,很不好搞,在网上折腾了很久终于搞定了,在这里做个笔记: 2.运行:java -Djava.ext.dirs=./l ...
- 腾讯云域名申请+ssl证书申请+springboot配置https
阿里云域名申请 域名申请比较简单,使用微信注册阿里云账号并登陆,点击产品,选择域名注册 输入你想注册的域名 进入域名购买页面,搜索可用的后缀及价格,越热门的后缀(.com,.cn)越贵一般,并且很可能 ...