CF708E Student's Camp
麻麻我会做*3100的计数了,我出息了
考虑朴素DP我们怎么做呢。
设\(f_{i,l,r}\)为第\(i\)层选择\(l,r\)的依旧不倒的概率。
\(q(l,r)\)表示经历了\(k\)天后,存活下来的区间为\([l,r]\)的概率。
发现其可以转为前缀后缀形式。
即前缀删掉了\(l - 1\)个,后缀删了\(m - r\)个。
而删掉的过程是独立的。
那么删掉\(i\)个的概率为\(d(i)\)
显然有\(d(i) = \binom{i}{k}p^{i} \times ({1 - p})^{k - i}\)
那么有\(q(l,r) = d(l - 1) * d(m - r)\)
那么有\(f_{i,l,r} = q(l,r) * (\sum f_{i - 1,li,ri} ([li,ri] 交于 [l,r]))\)
直接暴力枚举\([li,ri],[l,r]\)这样是\(O(nm^4)\)的
考虑我们并不需要枚举\([li,ri]\),此时我们考虑容斥。
设\(S(i) = \sum f_{i,l,r}\)
那么有不交\([l,r]\)的区间的和为\(S(i - 1) - \sum{f_{i,li,ri}(ri < li)} - \sum{f_{i,li,ri}(li > ri)}\)
那么不妨记录对\(r\)记录前缀和,对\(l\)记录后缀和。
那么设\(pre(i,j) = \sum (f_{i,l,r} (r <= j))\)
设\(fail(i,j) = \sum (f_{i,l,r} (l >= j))\)
那么改写原柿子,\(f_{i,l,r} = (d(l - 1) * d(m - r)) * (S(i - 1) - pre(i - 1,l - 1) - fail(i - 1,r + 1)\)
利用前缀后缀和,则可以做到\(O(nm^2)\)
考虑我们接着优化,因为我们发现,实际上我们并不关心每个\([l,r]\)的答案是什么。
我们只关心以\(l\)开头的,和以\(r\)结尾的dp值的和,以及全局答案。
那么启示我们枚举\(l\),并用某种后缀和计算一次性处理后缀\(r\)。
我们考虑拆项。
\((d(l - 1) * d(m - r)) * (S(i - 1) - pre(i - 1,l - 1) - fail(i - 1,r + 1) = d(l - 1) * S(i - 1) * d(m - r) - pre(i - 1,l - 1) * d(l - 1) * d(m - r) - fail(i - 1,r + 1) * d(m -r) * d(l - 1)\)
那么只要维护\(\sum pre(i - 1,l) * d(l),fail(i - 1,r + 1) * d(m - r),d(l),d(r)\)
即可。
CF708E Student's Camp的更多相关文章
- 【CF708E】Student's Camp 组合数+动态规划
[CF708E]Student's Camp 题意:有一个n*m的网格,每一秒钟,所有左面没有格子的格子会有p的概率消失,右面没有格子的格子也会有p的概率消失,问你t秒钟后,整个网格的上边界和下边界仍 ...
- [Codeforces708E]Student's Camp
Problem 一个n*m块砖的建筑,一共k天,每天风从两边吹,吹掉砖的概率为p,反之为1-p,求最终建筑没有倒塌的可能性(上层与下层有交集且每一层都有砖) Solution 首先,我们可以预处理出p ...
- [CodeForces-708E]Student's Camp
题目大意: 一个n*m的墙,被吹k天风,每块靠边的砖都有p的概率被吹掉. 如果上下两行没有直接相连的地方,我们则认为这一堵墙已经倒塌. 问最后墙不倒塌的概率(模意义). 思路: 动态规划. 用f[i] ...
- Student's Camp CodeForces - 708E (dp,前缀和优化)
大意: $n$行$m$列砖, 白天左侧边界每块砖有$p$概率被摧毁, 晚上右侧边界有$p$概率被摧毁, 求最后上下边界连通的概率. 记${dp}_{i,l,r}$为遍历到第$t$行时, 第$t$行砖块 ...
- Codeforces 708E - Student's Camp(前缀和优化 dp)
Codeforces 题目传送门 & 洛谷题目传送门 神仙 *3100,%%% 首先容易注意到 \(\forall i\in[1,m]\),第 \(i\) 行剩余的砖块一定构成一个区间,设其为 ...
- Codeforces Round #588 (Div. 2) D. Marcin and Training Camp(思维)
链接: https://codeforces.com/contest/1230/problem/D 题意: Marcin is a coach in his university. There are ...
- java.io.NotSerializableException: test.io.file.Student
java.io.NotSerializableException: test.io.file.Student at java.io.ObjectOutputStream.writeObject0 ...
- 使用java反射机制编写Student类并保存
定义Student类 package org; public class Student { private String _name = null; ; ; public Student() { } ...
- 参加MVP OpenDay 和2015 MVP Community Camp社区大课堂
微软MVP Openday 1月30日在北京召开,到时全国上百位 MVP 专家将齐聚北京.当然还有亚太的其他国家地区的MVP 也会来北京,1月31日微软 MVP 项目组主办的年度微软技术社区分享大会- ...
随机推荐
- (翻译)领域驱动设计实现-Implementing Domain Driven Design
简介 Implementing Domain Driven Design 领域驱动设计实现 A practical guide for implementing the Domain Driven D ...
- RabbitMQ:从入门到搞定面试官
安装 使用docker安装,注意要安装tag后缀为management的镜像(包含web管理插件),我这里使用的是rabbitmq:3.8-management 1. 拉取镜像 shell docke ...
- MySQL:怒刷牛客网“sql实战”
MySQL:怒刷牛客网"sql实战" 在对MySQL有一定了解后,抽空刷了一下 牛客网上的 数据库SQL 实战,在此做一点小小的记录 SQL1 查找最晚入职员工的所有信息 sele ...
- SpringMvc 中 FrameworkServlet 覆盖 service 的有点。
@Override protected void service(HttpServletRequest request, HttpServletResponse response) throws Se ...
- [no_code]团队任务拆解Alpha
项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 团队任务拆解 我们在这个课程的目标是 远程协同工作,采用最新技术开发软件 这个作业在哪个具体方面帮 ...
- 阿里Nacos部署
Nacos的部署 一.单机部署 **4.修改 Nacos 存储为 Mysql** 二.集群部署 1.机器部署列表 2.修改 `nacos/conf/application.properties`中的端 ...
- Noip模拟83 2021.10.26
T1 树上的数 有手就能在衡中$OJ$上过,但是$WaitingCoders$不行,就是这样 必须使用$O(n)$算法加上大力卡常,思路就是找子树内没更新的更新,更新过了直接$return$ 1 #i ...
- C语言教你写个‘浪漫烟花‘---特别漂亮
效果展示 动态图 总体框架 /***************************************** * 项目名称:浪漫烟花 * 项目描述:贴图 * 项目环境:vs2019 * 生成日期: ...
- 面试官问:说说你对Java函数式编程的理解
常见的面试问题 总结一下,在Java程序员的面试中,经常会被问到类似这样的问题: Java中的函数式接口是什么意思? 注解 @FunctionalInterface 的作用是什么? 实现一个函数式接口 ...
- 像素反转 牛客网 程序员面试金典 C++ Python
像素反转 牛客网 程序员面试金典 题目描述 有一副由NxN矩阵表示的图像,这里每个像素用一个int表示,请编写一个算法,在不占用额外内存空间的情况下(即不使用缓存矩阵),将图像顺时针旋转90度. 给定 ...