CF708E Student's Camp
麻麻我会做*3100的计数了,我出息了
考虑朴素DP我们怎么做呢。
设\(f_{i,l,r}\)为第\(i\)层选择\(l,r\)的依旧不倒的概率。
\(q(l,r)\)表示经历了\(k\)天后,存活下来的区间为\([l,r]\)的概率。
发现其可以转为前缀后缀形式。
即前缀删掉了\(l - 1\)个,后缀删了\(m - r\)个。
而删掉的过程是独立的。
那么删掉\(i\)个的概率为\(d(i)\)
显然有\(d(i) = \binom{i}{k}p^{i} \times ({1 - p})^{k - i}\)
那么有\(q(l,r) = d(l - 1) * d(m - r)\)
那么有\(f_{i,l,r} = q(l,r) * (\sum f_{i - 1,li,ri} ([li,ri] 交于 [l,r]))\)
直接暴力枚举\([li,ri],[l,r]\)这样是\(O(nm^4)\)的
考虑我们并不需要枚举\([li,ri]\),此时我们考虑容斥。
设\(S(i) = \sum f_{i,l,r}\)
那么有不交\([l,r]\)的区间的和为\(S(i - 1) - \sum{f_{i,li,ri}(ri < li)} - \sum{f_{i,li,ri}(li > ri)}\)
那么不妨记录对\(r\)记录前缀和,对\(l\)记录后缀和。
那么设\(pre(i,j) = \sum (f_{i,l,r} (r <= j))\)
设\(fail(i,j) = \sum (f_{i,l,r} (l >= j))\)
那么改写原柿子,\(f_{i,l,r} = (d(l - 1) * d(m - r)) * (S(i - 1) - pre(i - 1,l - 1) - fail(i - 1,r + 1)\)
利用前缀后缀和,则可以做到\(O(nm^2)\)
考虑我们接着优化,因为我们发现,实际上我们并不关心每个\([l,r]\)的答案是什么。
我们只关心以\(l\)开头的,和以\(r\)结尾的dp值的和,以及全局答案。
那么启示我们枚举\(l\),并用某种后缀和计算一次性处理后缀\(r\)。
我们考虑拆项。
\((d(l - 1) * d(m - r)) * (S(i - 1) - pre(i - 1,l - 1) - fail(i - 1,r + 1) = d(l - 1) * S(i - 1) * d(m - r) - pre(i - 1,l - 1) * d(l - 1) * d(m - r) - fail(i - 1,r + 1) * d(m -r) * d(l - 1)\)
那么只要维护\(\sum pre(i - 1,l) * d(l),fail(i - 1,r + 1) * d(m - r),d(l),d(r)\)
即可。
CF708E Student's Camp的更多相关文章
- 【CF708E】Student's Camp 组合数+动态规划
[CF708E]Student's Camp 题意:有一个n*m的网格,每一秒钟,所有左面没有格子的格子会有p的概率消失,右面没有格子的格子也会有p的概率消失,问你t秒钟后,整个网格的上边界和下边界仍 ...
- [Codeforces708E]Student's Camp
Problem 一个n*m块砖的建筑,一共k天,每天风从两边吹,吹掉砖的概率为p,反之为1-p,求最终建筑没有倒塌的可能性(上层与下层有交集且每一层都有砖) Solution 首先,我们可以预处理出p ...
- [CodeForces-708E]Student's Camp
题目大意: 一个n*m的墙,被吹k天风,每块靠边的砖都有p的概率被吹掉. 如果上下两行没有直接相连的地方,我们则认为这一堵墙已经倒塌. 问最后墙不倒塌的概率(模意义). 思路: 动态规划. 用f[i] ...
- Student's Camp CodeForces - 708E (dp,前缀和优化)
大意: $n$行$m$列砖, 白天左侧边界每块砖有$p$概率被摧毁, 晚上右侧边界有$p$概率被摧毁, 求最后上下边界连通的概率. 记${dp}_{i,l,r}$为遍历到第$t$行时, 第$t$行砖块 ...
- Codeforces 708E - Student's Camp(前缀和优化 dp)
Codeforces 题目传送门 & 洛谷题目传送门 神仙 *3100,%%% 首先容易注意到 \(\forall i\in[1,m]\),第 \(i\) 行剩余的砖块一定构成一个区间,设其为 ...
- Codeforces Round #588 (Div. 2) D. Marcin and Training Camp(思维)
链接: https://codeforces.com/contest/1230/problem/D 题意: Marcin is a coach in his university. There are ...
- java.io.NotSerializableException: test.io.file.Student
java.io.NotSerializableException: test.io.file.Student at java.io.ObjectOutputStream.writeObject0 ...
- 使用java反射机制编写Student类并保存
定义Student类 package org; public class Student { private String _name = null; ; ; public Student() { } ...
- 参加MVP OpenDay 和2015 MVP Community Camp社区大课堂
微软MVP Openday 1月30日在北京召开,到时全国上百位 MVP 专家将齐聚北京.当然还有亚太的其他国家地区的MVP 也会来北京,1月31日微软 MVP 项目组主办的年度微软技术社区分享大会- ...
随机推荐
- C11 (GNU Dialect) -std=gnu11 和 -std=c11
C11 (GNU Dialect) -std=gnu11 和 -std=c11 C11 (GNU Dialect) -std=gnu11 和 -std=c11 用于 IntelliSense 的 C ...
- python join的用法
joinn其实就相当于用某个字符串来拼接列表或者元组中的元素 当然也可以将字符串以某一个str拼接起来 得出的结果自然也是字符串 ex1: results: 实例用处: 当我们从某个文件中读出内容时, ...
- 自定义ConditionalOnXX注解
一.Conditional注解介绍 对SpringBoot有足够了解的小伙伴应该都用过Conditional系列注解,该注解可用在类或者方法上用于控制Bean的初始化. 常用的Conditional注 ...
- 联想SR658安装显卡驱动【NVIDIA Tesla V100】
1. 安装基础依赖环境 yum -y install gcc kernel-devel kernel-headers 2.查看内核和源码版本是否一致 查看内核版本: ls /boot | grep v ...
- 使用nexus搭建一个docker私服
使用nexus搭建docker私服 一.需求: 二.实现步骤 1.编写`docker-compose`文件,实现`nexus`的部署 2.修改/usr/lib/systemd/system/docke ...
- 安装hexo博客
前言 ** 跟着步骤一步一步来进行安装 ** 准备环境:node.js和包管理器npm 1:查看包文件 接着安装 淘宝镜像源 sudo这个需要添加获取文件夹访问权限 sudo npm install ...
- C/C++编程笔记:浪漫流星雨表白装b程序
作为一个未来可能会成为一个专业程序员的小伙们,不知道你们现在学到哪里了,学了点东西之后有没有想在你女朋友面前装个大大的b呢,今天小编就给你一个机会来研究一下下边的代码吧,保证大写的N,当然大佬是排除在 ...
- Xpath运算符
5.position定位 >>print tree.xpath('//*[@id="testid"]/ol/li[position()=2]/text()')[0] & ...
- 旋转数组的最小数字 牛客网 剑指Offer
旋转数组的最小数字 牛客网 剑指Offer 题目描述 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转. 输入一个非减排序的数组的一个旋转,输出旋转数组的最小元素. 例如数组{3,4, ...
- 翻转子串 牛客网 程序员面试金典 C++ Python
反转子串 牛客网 程序员面试金典 C++ Python 题目描述 假定我们都知道非常高效的算法来检查一个单词是否为其他字符串的子串.请将这个算法编写成一个函数,给定两个字符串s1和s2,请编写代码检查 ...