题目传送门

题目大意

给出一个数 \(n\),你要构造一个数列,满足里面每个数都是 \(n\) 的因子,且每一个数与前面不互质的个数不超过 \(1\)。问有多少种合法方案。

保证 \(n\) 的不同质因子个数 \(\le 6\)。

思路

这个题不是很难,只是比较难写。不过 \(\Theta(6\times 3^6)\) 的做法感觉比较有意思,但是我写的是玄学时间复杂度的做法。

我们可以看出数列长度最大也就 \(12\),而且质因子个数也很少,不难想到状压 dp,我们发现这个状压 dp 完全没有什么难点,直接 \(f_{S,x}\) 表示当前状态为 \(S\),已经填了 \(x\) 位的方案数。对于一个状态,肯定是每个质因子的状态组合起来,你发现重要的不过就是这个质因子出现了几次,如果只出现一次是哪些质因子一起出现的。你把这个压进状态就好了。

似乎预处理了之后转移可以更快,但是懒得了。

\(\texttt{Code}\)

#include <bits/stdc++.h>
using namespace std; #define Int register int
#define mod 1000000007
#define ll long long template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');} ll N;
int cnt,yz[15],pw[15]; int mul (int a,int b){return 1ll * a * b % mod;}
int dec (int a,int b){return a >= b ? a - b : a + mod - b;}
int add (int a,int b){return a + b >= mod ? a + b - mod : a + b;}
void Mul (int &a,int b){a = mul (a,b);}
void Dec (int &a,int b){a = dec (a,b);}
void Add (int &a,int b){a = add (a,b);} void Makeyz (ll n){
for (Int i = 2;1ll * i * i <= n;++ i){
if (n % i == 0){
yz[++ cnt] = i;
while (n % i == 0) n /= i,pw[cnt] ++;
}
}
if (n > 1) yz[++ cnt] = n,pw[cnt] = 1;
} int f[1 << 19][15]; signed main(){
read (N),Makeyz (N);
f[0][0] = 1;int ans = 0;
for (Int x = 0;x < cnt * 2;++ x){
for (Int nowS = 0;nowS < (1 << cnt * 3);++ nowS){
if (!f[nowS][x]) continue;
vector <int> unused,cho;
bool used[12] = {};
for (Int i = 1;i <= cnt;++ i){
int k = nowS >> (i - 1) * 3 & 7;
if (!k) unused.push_back (i);
else if (k < 7 && !used[k]) cho.push_back (i),used[k] = 1;
}
int siz1 = unused.size(),siz2 = cho.size();
for (Int S = 0;S < (1 << siz1);++ S){
int kase = 1,S1 = 0,fir = 0;
for (Int i = 0;i < siz1;++ i) if (S >> i & 1)
fir = fir ? fir : unused[i],Mul (kase,pw[unused[i]]),S1 |= (1 << (unused[i] - 1) * 3) * fir;
if (S) Add (f[nowS | S1][x + 1],mul (kase,f[nowS][x]));
if (!cho.size()) continue;
for (Int u : cho){
int k = nowS >> (u - 1) * 3 & 7,siz2 = 0;
vector <int> uni;
for (Int i = 1;i <= cnt;++ i) if ((nowS >> (i - 1) * 3 & 7) == k) uni.push_back (i);
siz2 = uni.size();
for (Int choS = 1;choS < (1 << siz2);++ choS){
int newS = nowS | S1,fir = 0x7f7f7f7f,kase1 = 1;
for (Int i = 0;i < siz2;++ i)
if (choS >> i & 1) newS -= (1 << (uni[i] - 1) * 3) * (k - 7),Mul (kase1,pw[uni[i]]);
else fir = min (fir,uni[i]);
for (Int i = 0;i < siz2;++ i) if (!(choS >> i & 1)) newS -= (1 << (uni[i] - 1) * 3) * (k - fir);
Add (f[newS][x + 1],mul (f[nowS][x],mul (kase,kase1)));
}
}
}
}
}
for (Int x = 1;x <= cnt * 2;++ x) for (Int nowS = 0;nowS < (1 << cnt * 3);++ nowS) Add (ans,f[nowS][x]);
write (ans),putchar ('\n');
return 0;
}

题解 2020.10.24 考试 T3 数列的更多相关文章

  1. 题解 2020.10.24 考试 T2 选数

    题目传送门 题目大意 见题面. 思路 本来以为zcx.pxj变强了,后来发现是SPJ出问题了...考试的时候感觉有点人均啊...结果自己还是只想出来一半. 我们假设 \(f(x)=(\lfloor\f ...

  2. 题解 2020.10.24 考试 T4 模板

    题目传送门 题目大意 有一个 \(n\) 个点组成的树,有 \(m\) 次操作,每次将 \(1\to x\) 的路径上每个点都加入一个颜色为 \(c\) 的小球.但是每个点都有大小限制,即小球个数超过 ...

  3. 10.24考试题解qwq

    考点难度都很合适的一套题目,大概在day1到day2之前 T1 猴猴最喜欢在树上玩耍,一天猴猴又跳上了一棵树,这棵树有N个苹果,每个苹果有一个编号,分别为0~N-1,它们之间由N-1个树枝相连,猴猴可 ...

  4. 题解【2.23考试T3】val

    3. val[题目描述] 这是一道传统题,源代码的文件名为 val.cpp/c/pas. 有一个值初始为 0,接下来 n 次你可以令其在之前基础上+2 或+1 或-1.你需要保证,这个值在整个过程中达 ...

  5. 2020.10.24【普及组】模拟赛C组 总结

    T1:暴力 1:先从 6 个中选三个,再把选出的三个全排列,全排列后再判断是否可行 2:把 6 个全都全排列,然后判断 T2:判断误差 1:减法时结果加上 1e-8 2:把小数乘上 1e6 左右 考试 ...

  6. 2016 10 28考试 dp 乱搞 树状数组

    2016 10 28 考试 时间 7:50 AM to 11:15 AM 下载链接: 试题 考试包 这次考试对自己的表现非常不满意!! T1看出来是dp题目,但是在考试过程中并没有推出转移方程,考虑了 ...

  7. JZOJ 2020.10.6 提高B组反思

    JZOJ 2020.10.6 提高B组反思 T1 NYG的动态数点 最简单的一题 很容易想到\(O(n)\)的做法 枚举最小的那个数,即\(a_k\) 然后向左和向右扩展 然后可以直接从右端点+1继续 ...

  8. 10.24 正睿停课训练 Day8 AM

    目录 2018.10.24 正睿停课训练 Day8 AM A 棒棒糖(组合) B 彩虹糖(思路 博弈) C 泡泡糖(DP) 考试代码 A B C 2018.10.24 正睿停课训练 Day8 AM 期 ...

  9. 2020.10.17 JZOJ 提高B组T2 导弹拦截

    2020.10.17 JZOJ 提高B组T2 导弹拦截 题目 Description 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统. 敌国的导弹形成了立体打击,每个导弹可以抽象成一个三维空间中的 ...

随机推荐

  1. PHP小数点后保留位数并四舍五入

    ceil() 函数向上舍入为最接近的整数,进一(k>0).ceil(0.60) --> 1ceil(0.40) --> 1ceil(5) --> 5ceil(5.1) --&g ...

  2. Springboot 整合通用mapper和pagehelper展示分页数据(附github源码)

    简介 springboot 设计目的就是为了加速开发,减少xml的配置.如果你不想写配置文件只需要在配置文件添加相对应的配置就能快速的启动的程序. 通用mapp 通用mapper只支持对单表的操作,对 ...

  3. 在同一台计算机中运行多个MySQL服务

    目录 一.问题的来源 二.配置 1. 修改原来MySQL系统的my.ini文件 2. 修改注册表 3. 重新启动服务 4. 最终效果 一.问题的来源 这个学期里我需要修读<数据库系统>的课 ...

  4. Linux环境搭建及项目部署

    一. VMWare安装图解 1.点击下一步 2.接受条款,下一步 3.选择安装目录,不建议有中文目录和空格目录.下一步 4.下一步 5.这两个选项根据可以爱好习惯选择,下一步 6.安装 7.完成 9. ...

  5. Linux 动态库的编译和使用

    1. 动态链接库简介 动态库又叫动态链接库,是程序运行的时候加载的库,当动态链接库正确安装后,所有的程序都可以使用动态库来运行程序.动态库是目标文件的集合,目标文件在动态库中的组织方式是按特殊的方式组 ...

  6. VUE001. 拖动div盒子(自定义指令v-directives)

    拖动div是一个逻辑很简单的需求,监听容器的鼠标按下松开的事件,执行函数通过DOM改变标签的CSS偏移量. 在VUE构建的项目中,通过标签的 @mousedown 和 @mouseup 赋予行为事件, ...

  7. 使用 mysql 的 Docker 镜像

    使用 mysql 的 Docker 镜像 前言 之前搞了很多都是手工在操作系统的镜像中安装使用 mysql,作为自己折腾也就算了,作为实际使用实为不妥:Docker最重要的特性就是可扩展性,把各种程序 ...

  8. 洛谷P1603——斯诺登的密码(字符串处理)

    https://www.luogu.org/problem/show?pid=1603#sub 题目描述 2013年X月X日,俄罗斯办理了斯诺登的护照,于是他混迹于一架开往委内瑞拉的飞机.但是,这件事 ...

  9. 引人遐想,用 Python 获取你想要的 “某个人” 摄像头照片

    仅用来学习,希望给你们有提供到学习上的作用. 1.安装库 需要安装python3.5以上版本,在官网下载即可.然后安装库opencv-python,安装方式为打开终端输入命令行. 2.更改收件人和发件 ...

  10. [原创]OpenEuler20.03安装配置PostgreSQL13.4详细图文版

    OpenEuler安装配置PostgreSQL 编写时间:2021年9月18日 作者:liupp 邮箱:liupp@88.com 序号 更新内容 更新日期 更新人 1 完成第一至三章内容编辑: 202 ...