拿到一道题,先写出状态转移方程,再优化时间复杂度

状态优化:

对于状态可累加

\(e.g.dp[i+j]=dp[i]+dp[j]+i+j\)

的,用倍增优化

决策优化:

\(e.g.dp[i][j]=\max(dp[i-1][j-233]+(j-233)^2,dp[i-1][j-232]+(j-232)^2,...,dp[i-1][j]+j^2)\)

单调队列优化

\(e.g.dp[i]=\max(dp[1]+i,dp[2]+2i,...,dp[i-1]+(i-1)i)\)

斜率优化

交叉小于包含

\(e.g.dp[i][j]=\max(dp[i][i]+dp[i+1][j],dp[i][i+1]+dp[i+2][j],...,dp[i][j-1]+dp[j-1][j],dp[i][j]+dp[j][j])\)

用四边形不等式优化

关于dp那些事的更多相关文章

  1. UVa 12683 Odd and Even Zeroes(数论+数字DP)

    意甲冠军: 要求 小于或等于n号码 (0<=n <= 1e18)尾数的数的阶乘0数为偶数 思考:当然不是暴力,因此,从数论.尾数0数为偶数,然后,它将使N阶乘5电源是偶数.(二指数肯定少5 ...

  2. android dp深度解析(转)

    我转载地方的连接:http://zhangkun716717-126-com.iteye.com/blog/1772696  当笔记记录一下 dip: device independent pixel ...

  3. 雷神领域(并查集真是个好东西)并查集+流氓dp

    考场上,整整看了半个小时以上的题目!!! 化简题意: 给定一个全0矩阵,一些坐标点(x,y)为1,当三个点可以构成一个直角三角形时(直角边长为整数)拓展为一个矩形,之后从(0,0)出发,求最多的占用行 ...

  4. 【题解】P1291 百事世界杯之旅 - 期望dp

    P1291 [SHOI2002]百事世界杯之旅 声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。 题目描述 "--在 \ ...

  5. 洛谷P1291 [SHOI2002]百事世界杯之旅——期望DP

    题目:https://www.luogu.org/problemnew/show/P1291 水水的经典期望DP: 输出有毒.(其实也很简单啦) 代码如下: #include<iostream& ...

  6. 洛谷P1291 [SHOI2002]百事世界杯之旅(期望DP)

    题目描述 “……在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听,更克赴日韩观看世界杯.还不赶 ...

  7. LUOGU P1291 [SHOI2002]百事世界杯之旅 (期望dp)

    传送门 解题思路 期望$dp$.因为这个是期望步数,所以要倒着推.那么这道题就变得一脸可做了,设$f[i]$表示还有$i$张牌没有收集的期望,那么考虑再抽一张,有$(n-i)/n$的概率抽到抽过的牌, ...

  8. 关于一些基础的dp——硬币的那些事(dp的基本引入)

    1.最少硬币问题大体题意: 有n种硬币,面值分别是v1,v2......vn,数量无限,输入一个非负整数s,选用硬币使其和为s,要求输出最少的硬币组合. 我们可以这样分析: 定义一个名为Min[s]的 ...

  9. 2018.10.15 NOIP训练 百事世界杯之旅(期望dp)

    传送门 期望题. 其实跟dpdpdp关系并不大. 考虑f[i]f[i]f[i]表示已经凑出了iii个需要的次数. 显然有:f[i]=ni∗f[i]+nn−i∗f[i+1]+1f[i]=\frac {n ...

随机推荐

  1. nacos配置

    server: port: 3377 spring: application: name: nacos-config-client cloud: nacos: discovery: #nacos 服务 ...

  2. 小程序跨页面传递data数据的三种方法

    Q:小程序怎么把页面data里的数据传到另外的页面? 或者小程序怎么吧表单里的数据传到另外的页面?A:1.可以使用url传递数据. 例如在A页面中传递数据,需要注意的是,wx.switchTab中的u ...

  3. docker-compose权限不够

    root@kali:~# docker-compose version -bash: /usr/local/bin/docker-compose: 权限不够 chmod +x /usr/local/b ...

  4. Python习题集(十五)

    每天一习题,提升Python不是问题!!有更简洁的写法请评论告知我! https://www.cnblogs.com/poloyy/category/1676599.html 题目 请写一个函数,该函 ...

  5. ES6:使用解构赋值仅用一行定义多个相同的数组,且指向堆不同(解构赋值)

    在开发过程中我们经常要用到一些临时变量对数据进行一些特殊处理,由于良好的编码习惯要在临时变量用完后释放内存,所以当临时变量数量较多时,整体代码会变得冗余. let a = [] let b = [] ...

  6. window server 2008 系统加固

    1.更改管理员账号: 开始->运行->compmgmt.msc(计算机管理)->本地用户和组->用户,右击Administrator账户并选择"重命名",并 ...

  7. vue页面跳转以及传参和取参

    vue中this.$router.push()路由传值和获取的两种常见方法 1.路由传值   this.$router.push() (1) 想要导航到不同的URL,使用router.push()方法 ...

  8. 计算机基础知识以及java JDK、JRE

    计算机 计算机(Computer)全称:电子计算机,是一种能够按照程序运行,自动.高速处理海量数据的现代化智能电子设备.由硬件和软件所组成,没有安装任何软件的计算机称为裸机.常见的形式有台式计算机.笔 ...

  9. Java集合:HashMap

    Hashmap是一个存储key-value的映射表. 优点: 索引数据快,查找一个数据对的时间复杂度是O(1) 增加.删除一个数据的时间复杂度是O(1) key不能重复,可以存储一个null值 存储: ...

  10. HTML基本概念及基本标签

    HTML基本概念及基本语法 1.HTML的基本概念 1.1  B/S.C/S基本概念 B/S(Browser/Server):指的是浏览器端与服务器端工作模式,优点相对节省本地存储空间,不足是需要占用 ...