拿到一道题,先写出状态转移方程,再优化时间复杂度

状态优化:

对于状态可累加

\(e.g.dp[i+j]=dp[i]+dp[j]+i+j\)

的,用倍增优化

决策优化:

\(e.g.dp[i][j]=\max(dp[i-1][j-233]+(j-233)^2,dp[i-1][j-232]+(j-232)^2,...,dp[i-1][j]+j^2)\)

单调队列优化

\(e.g.dp[i]=\max(dp[1]+i,dp[2]+2i,...,dp[i-1]+(i-1)i)\)

斜率优化

交叉小于包含

\(e.g.dp[i][j]=\max(dp[i][i]+dp[i+1][j],dp[i][i+1]+dp[i+2][j],...,dp[i][j-1]+dp[j-1][j],dp[i][j]+dp[j][j])\)

用四边形不等式优化

关于dp那些事的更多相关文章

  1. UVa 12683 Odd and Even Zeroes(数论+数字DP)

    意甲冠军: 要求 小于或等于n号码 (0<=n <= 1e18)尾数的数的阶乘0数为偶数 思考:当然不是暴力,因此,从数论.尾数0数为偶数,然后,它将使N阶乘5电源是偶数.(二指数肯定少5 ...

  2. android dp深度解析(转)

    我转载地方的连接:http://zhangkun716717-126-com.iteye.com/blog/1772696  当笔记记录一下 dip: device independent pixel ...

  3. 雷神领域(并查集真是个好东西)并查集+流氓dp

    考场上,整整看了半个小时以上的题目!!! 化简题意: 给定一个全0矩阵,一些坐标点(x,y)为1,当三个点可以构成一个直角三角形时(直角边长为整数)拓展为一个矩形,之后从(0,0)出发,求最多的占用行 ...

  4. 【题解】P1291 百事世界杯之旅 - 期望dp

    P1291 [SHOI2002]百事世界杯之旅 声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。 题目描述 "--在 \ ...

  5. 洛谷P1291 [SHOI2002]百事世界杯之旅——期望DP

    题目:https://www.luogu.org/problemnew/show/P1291 水水的经典期望DP: 输出有毒.(其实也很简单啦) 代码如下: #include<iostream& ...

  6. 洛谷P1291 [SHOI2002]百事世界杯之旅(期望DP)

    题目描述 “……在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听,更克赴日韩观看世界杯.还不赶 ...

  7. LUOGU P1291 [SHOI2002]百事世界杯之旅 (期望dp)

    传送门 解题思路 期望$dp$.因为这个是期望步数,所以要倒着推.那么这道题就变得一脸可做了,设$f[i]$表示还有$i$张牌没有收集的期望,那么考虑再抽一张,有$(n-i)/n$的概率抽到抽过的牌, ...

  8. 关于一些基础的dp——硬币的那些事(dp的基本引入)

    1.最少硬币问题大体题意: 有n种硬币,面值分别是v1,v2......vn,数量无限,输入一个非负整数s,选用硬币使其和为s,要求输出最少的硬币组合. 我们可以这样分析: 定义一个名为Min[s]的 ...

  9. 2018.10.15 NOIP训练 百事世界杯之旅(期望dp)

    传送门 期望题. 其实跟dpdpdp关系并不大. 考虑f[i]f[i]f[i]表示已经凑出了iii个需要的次数. 显然有:f[i]=ni∗f[i]+nn−i∗f[i+1]+1f[i]=\frac {n ...

随机推荐

  1. 刷题-力扣-剑指 Offer II 055. 二叉搜索树迭代器

    剑指 Offer II 055. 二叉搜索树迭代器 题目链接 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/kTOapQ 著作权归领扣网络所有 ...

  2. springboot邮通知553错误和

    com.sun.mail.smtp.SMTPSendFailedException: 553 Mail from must equal authorized user ; nested excepti ...

  3. Vivado实战—单周期CPU指令分析

    引言   不知道你是否和我有过同样的感受,<计算机组成原理>这门学科学起来如此的艰难:一节课下来,教室黑板上留下了满满的 "足迹",看上去也挺简单的,不就是 0 和 1 ...

  4. .Net中异步任务的取消和监控

    相关类型: CancellationTokenSource 主要用来创建或取消令牌 CancellationToken 监听令牌状态,注册令牌取消事件 OperationCanceledExcepti ...

  5. 如何实现CSS限制字数,超出部份显示省略号

    <div style="width:200px; white-space:nowrap;overflow:hidden;text-overflow:ellipsis; border:1 ...

  6. linux多次登录失败锁定账户

    2021-07-22 1.配置对系统进行失败的ssh登录尝试后锁定用户帐户 # 配置登录访问的限制 vi /etc/pam.d/system-auth 或者 vi etc/pam.d/password ...

  7. 聊聊spring事务失效的12种场景,太坑了

    前言 对于从事java开发工作的同学来说,spring的事务肯定再熟悉不过了. 在某些业务场景下,如果一个请求中,需要同时写入多张表的数据.为了保证操作的原子性(要么同时成功,要么同时失败),避免数据 ...

  8. SQLServer数据库查询语法

    SQLServer数据库查询语法 前言: SQLServer数据库介绍: SQLServer数据库是微软公司推出的一款关系型数据库系统,SQL Server是一个可扩展的.高性能的.为分布式客户机/服 ...

  9. kubernetes 安装 ingress controller

    文章链接 ingress-nginx ingress 官方网站 ingress 仓库地址 ingress-nginx v1.0 最新版本 v1.0 适用于 Kubernetes 版本 v1.19+ ( ...

  10. 再见了,我的散装研发管理平台;再见了,4台ECS!

    周末的时候,收到好几个云服务器临近过期的通知短信,准备续个费,居然都要大几千!因为这几个都是以前低价抢购的,掐指一算,如果都续费的话,要蚕食好多利润!作为一名自己养活自己的独立开发者,节省成本是必备技 ...