拿到一道题,先写出状态转移方程,再优化时间复杂度

状态优化:

对于状态可累加

\(e.g.dp[i+j]=dp[i]+dp[j]+i+j\)

的,用倍增优化

决策优化:

\(e.g.dp[i][j]=\max(dp[i-1][j-233]+(j-233)^2,dp[i-1][j-232]+(j-232)^2,...,dp[i-1][j]+j^2)\)

单调队列优化

\(e.g.dp[i]=\max(dp[1]+i,dp[2]+2i,...,dp[i-1]+(i-1)i)\)

斜率优化

交叉小于包含

\(e.g.dp[i][j]=\max(dp[i][i]+dp[i+1][j],dp[i][i+1]+dp[i+2][j],...,dp[i][j-1]+dp[j-1][j],dp[i][j]+dp[j][j])\)

用四边形不等式优化

关于dp那些事的更多相关文章

  1. UVa 12683 Odd and Even Zeroes(数论+数字DP)

    意甲冠军: 要求 小于或等于n号码 (0<=n <= 1e18)尾数的数的阶乘0数为偶数 思考:当然不是暴力,因此,从数论.尾数0数为偶数,然后,它将使N阶乘5电源是偶数.(二指数肯定少5 ...

  2. android dp深度解析(转)

    我转载地方的连接:http://zhangkun716717-126-com.iteye.com/blog/1772696  当笔记记录一下 dip: device independent pixel ...

  3. 雷神领域(并查集真是个好东西)并查集+流氓dp

    考场上,整整看了半个小时以上的题目!!! 化简题意: 给定一个全0矩阵,一些坐标点(x,y)为1,当三个点可以构成一个直角三角形时(直角边长为整数)拓展为一个矩形,之后从(0,0)出发,求最多的占用行 ...

  4. 【题解】P1291 百事世界杯之旅 - 期望dp

    P1291 [SHOI2002]百事世界杯之旅 声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。 题目描述 "--在 \ ...

  5. 洛谷P1291 [SHOI2002]百事世界杯之旅——期望DP

    题目:https://www.luogu.org/problemnew/show/P1291 水水的经典期望DP: 输出有毒.(其实也很简单啦) 代码如下: #include<iostream& ...

  6. 洛谷P1291 [SHOI2002]百事世界杯之旅(期望DP)

    题目描述 “……在2002年6月之前购买的百事任何饮料的瓶盖上都会有一个百事球星的名字.只要凑齐所有百事球星的名字,就可参加百事世界杯之旅的抽奖活动,获得球星背包,随声听,更克赴日韩观看世界杯.还不赶 ...

  7. LUOGU P1291 [SHOI2002]百事世界杯之旅 (期望dp)

    传送门 解题思路 期望$dp$.因为这个是期望步数,所以要倒着推.那么这道题就变得一脸可做了,设$f[i]$表示还有$i$张牌没有收集的期望,那么考虑再抽一张,有$(n-i)/n$的概率抽到抽过的牌, ...

  8. 关于一些基础的dp——硬币的那些事(dp的基本引入)

    1.最少硬币问题大体题意: 有n种硬币,面值分别是v1,v2......vn,数量无限,输入一个非负整数s,选用硬币使其和为s,要求输出最少的硬币组合. 我们可以这样分析: 定义一个名为Min[s]的 ...

  9. 2018.10.15 NOIP训练 百事世界杯之旅(期望dp)

    传送门 期望题. 其实跟dpdpdp关系并不大. 考虑f[i]f[i]f[i]表示已经凑出了iii个需要的次数. 显然有:f[i]=ni∗f[i]+nn−i∗f[i+1]+1f[i]=\frac {n ...

随机推荐

  1. 【Azure 应用服务】使用PowerShell脚本上传文件至App Service目录  

    问题描述 使用PowerShell脚本上传文件至App Service目录的示例 脚本示例 对文件进行上传,使用的 WebClient.UploadFile 方法进行上传.当文件夹中包含子目录,执行以 ...

  2. Spring Boot集成Redis集群(Cluster模式)

    目录 集成jedis 引入依赖 配置绑定 注册 获取redis客户端 使用 验证 集成spring-data-redis 引入依赖 配置绑定 注册 获取redis客户端 使用 验证 异常处理 同样的, ...

  3. 使用什么快捷键,关闭、打开、最小化qq聊天窗口

    Alt+F4或者Alt+C关闭聊天窗口.Alt+空格+N 最小化聊天窗口.Alt+H 打开聊天记录,打开聊天窗口没有快捷键,必须点击qq好友图标

  4. AQS实现原理

    AQS实现原理 AQS中维护了一个volatile int state(共享资源)和一个CLH队列.当state=1时代表当前对象锁已经被占用,其他线程来加锁时则会失败,失败的线程被放入一个FIFO的 ...

  5. Java并发之锁升级:无锁->偏向锁->轻量级锁->重量级锁

    Java并发之锁升级:无锁->偏向锁->轻量级锁->重量级锁 对象头markword 在lock_bits为01的大前提下,只有当是否偏向锁位值为1的时候,才表明当前对象处于偏向锁定 ...

  6. Django的form组件——ModelForm实战

    模型: from django.db import models class Book(models.Model): book_name = models.CharField(max_length=3 ...

  7. nRF52832蓝牙iBeacon广播

    开发环境 SDK版本:nRF5_SDK_15.0.0 芯片:nRF52832-QFAA 蓝牙iBeacon实现 iBeacon的核心就是广播,不需要进行连接,通过在广播包中插入信息然后广播出去. 广播 ...

  8. openswan协商流程之(六):main_inI3_outR3()

    主模式第六包:main_inI3_outR3 1. 序言 main_inI3_outR3()函数是ISAKMP协商过程中第六包的核心处理函数的入口,第五六包主要用来验证对方的身份信息,同时此报文也是加 ...

  9. NAT-T下的端口浮动

    1. IKE端口浮动 IPsec在隧道建立第一第二阶段主要进行加密方式.加密策略等信息的协商,这部分功能是通过IKE协议来实现的. IKE协议默认端口为500,但是如果IPsec隧道传输路径上存在NA ...

  10. K8s Master当作Node使用的方法

    1.使用下面的命令操作使得master 可以作为node使用 承载pod kubectl taint nodes --all node-role.kubernetes.io/master- 可能会出现 ...