[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa convergent power series. This is called the Neumann series.
Solution. Since $\sen{A}<1$, $$\bex \sum_{n=0}^\infty \sen{A}^n=\frac{1}{1-\sen{A}}<\infty. \eex$$ Due to the completeness of the matrix space, $\dps{\sum_{n=0}^\infty A_n}$ converges. Since $$\bex (I-A)(I+\cdots+A^{n-1})=I-A^n, \eex$$ we may take limit to get $$\bex (I-A)\cdot \sum_{n=0}^\infty A^n=I. \eex$$
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
随机推荐
- 微软职位内部推荐-Pricipal Dev Manager for Application Ecosystem & Service
微软近期Open的职位: Location: China, BeijingDivision: Operations System Group Engineering Group OverviewOSG ...
- mvc权限,登陆,异常
public class FilterOfPer : ActionFilterAttribute { public override void OnActionExecutin ...
- swift基础--数组、字典
(1)初始化 (2)新增.修改.删除 (3)清空 (4)遍历 var array1 = ["x","y","z"] var array2:[ ...
- jquery 数组和字典
1 数组的创建 var arrayObj = new Array(); //创建一个数组 var arrayObj = new Array([size]); //创建一个数组并指定长度,注意不是上限, ...
- Log4net Level
ILog logger = LogManager.GetLogger(System.Reflection.MethodBase.GetCurrentMethod().DeclaringType); l ...
- [Firefly引擎][学习笔记一][已完结]带用户验证的聊天室
原地址:http://bbs.9miao.com/thread-44571-1-1.html 前言:早在群里看到大鸡蛋分享他们团队的Firefly引擎,但一直没有时间去仔细看看,恰好最近需要开发一个棋 ...
- 盘点 OSX 上最佳的 DevOps 工具
[编者按]对于运维人员来说,他们往往需要各种各样的工具来应对工作需求,近日 Dustin Collins 通过「The Best DevOps Tools on OSX」一文对 OSX 平台上的工具进 ...
- SQL四种语言:DDL,DML,DCL,TCL
1.DDL(Data Definition Language)数据库定义语言statements are used to define the database structure or schema ...
- java 转换 小函数(不断增加中。。。)
//char数组转换成byte数组 private byte[] getBytes (char[] chars) { Charset cs = Charset.forName ("UTF-8 ...
- C#基础精华07(委托事件,委托的使用,匿名方法)
1.委托概述 委托是一种数据类型,像类一样(可以声明委托类型变量).方法参数可以是int.string.类类型 void M1(int n){ } √ void M2(string s){ } √ ...