If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa convergent power series. This is called the Neumann series.

Solution.  Since $\sen{A}<1$, $$\bex \sum_{n=0}^\infty \sen{A}^n=\frac{1}{1-\sen{A}}<\infty. \eex$$ Due to the completeness of the matrix space, $\dps{\sum_{n=0}^\infty A_n}$ converges. Since $$\bex (I-A)(I+\cdots+A^{n-1})=I-A^n, \eex$$ we may take limit to get $$\bex (I-A)\cdot \sum_{n=0}^\infty A^n=I. \eex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

随机推荐

  1. 实战开发中UI资源制作标准

    资源制作标准设定建议 1.所有的UI资源全部采用PNG导出 因为Unity不支持外部压缩,所以,不论是用PNG还是JPG,只要尺寸相同,资源量在引擎中都会是一样大.所以,可以大胆地采用PNG进行输出, ...

  2. 【BZOJ 1013】 [JSOI2008]球形空间产生器sphere

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁 ...

  3. 一个有意思的js实例,你会吗??[原创]

    首先,看看下面一个js例子,你觉得会输出什么呢? function fn(a){ a(); function a(){ console.log(2); } var a = function(){ co ...

  4. linux编程之指针

    这个是数组指针.指针数组.二维数组之间相互转换的代码 #include<stdio.h> void main() { ][]={,,,,,,,}; int *b=NULL; int **c ...

  5. Nhibernate 一对一关系映射(主键映射)

    参考:点击这里 妈的,搞了一天了,终于可以了,现在总结下,以防下次再出现这样痛苦的问题了,有两个表:user(用户)和Blog(设置表),它们之间的关系正如我所说的是一对一的关系.现在我们来映射这两个 ...

  6. ExtJS4.2学习(10)分组表格控件--GroupingGrid(转)

    鸣谢网址:http://www.shuyangyang.com.cn/jishuliangongfang/qianduanjishu/2013-11-17/179.html ------------- ...

  7. Recommender Systems引言

    我想站在大神肩膀上...貌似是计算所的一个小伙伴... 总结的很好,看得出来有一定的功底.... 不过对于自己看过了的东西,就不愿意再翻看第二遍了.恰好这本书和项亮那本很像,就直接看这本书了.顺便记记 ...

  8. The 6th Zhejiang Provincial Collegiate Programming Contest->ProblemA:Second-price Auction

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3202 题意:拍卖东西,以第二高价的价格卖给出第一高价的人.输出最后获得东西 ...

  9. 用MT.exe将exe中的manifest文件提取出来和将manifest文件放入exe中

     前一种方法是将manifest文件放入exe中,但是要记得需要在工程中设置 这样的话exe中就不存在manifest了,在debug目录下就会看到相应的manifest文件.后者是将exe中的man ...

  10. POJ3282+模拟

    模拟题 /* 模拟 注意:相同一边的车有先后顺序! */ #include<stdio.h> #include<string.h> #include<stdlib.h&g ...