If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa convergent power series. This is called the Neumann series.

Solution.  Since $\sen{A}<1$, $$\bex \sum_{n=0}^\infty \sen{A}^n=\frac{1}{1-\sen{A}}<\infty. \eex$$ Due to the completeness of the matrix space, $\dps{\sum_{n=0}^\infty A_n}$ converges. Since $$\bex (I-A)(I+\cdots+A^{n-1})=I-A^n, \eex$$ we may take limit to get $$\bex (I-A)\cdot \sum_{n=0}^\infty A^n=I. \eex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

随机推荐

  1. js 判断页面加载状态

    //----判断当前页面是否加载状态 开始 ---- document.onreadystatechange = subSomething;//当页面加载状态改变的时候执行这个方法. function ...

  2. easy ui 菜单和按钮(Menu and Button)

    http://www.zi-han.net/case/easyui/menu&button.html

  3. ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务 的解决方法

    今天用PL/SQL连接虚拟机中的Oracle数据库,发现报了“ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务”错误,也许你也遇到过,原因如下: oracle安装成功后,一直未停止 ...

  4. hdu 4101

    比赛的时候先是受以前一个圣神海的题目 用了两遍DFS 第一遍标记出围墙  第二遍求围墙外和每块围墙降为1所需的攻击次数  结果爆栈  改为BFS后AC DFS的加了一句这个 #pragma comme ...

  5. Monad学习

    这是观看Cousera上的课程<Principles of Reactive Programming>中week1里的Monad一节所做的笔记. What is a Monad? What ...

  6. http://doc.okbase.net/congcong68/archive/112508.html

    http://doc.okbase.net/congcong68/archive/112508.html

  7. hdu 2028 Lowest Common Multiple Plus(最小公倍数)

    Lowest Common Multiple Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  8. BZOJ 3747 POI2015 Kinoman

    因为上午没有准备够题目,结果发现写完这道题没题可写了QAQ 又因为这道题范围是100w,我写了发线段树,以为要T,上午就花了一个小时拼命卡常数 结果下午一交居然过了QAQ 我们考虑枚举L,求最大R使得 ...

  9. netstat命令查看服务器运行情况

    netstat -n|grep 80出现大量time_wait 在运行netstat -n|grep 80 | awk '/^tcp/ {++S[$NF]} END {for(a in S) prin ...

  10. HeadFirst设计模式之门面模式

    一. 1.The Facade Pattern provides a unifi ed interface to a set of interfaces in a subsytem. Facade d ...