Description

ICPC (Isles of Coral Park City) consist of several beautiful islands.

The citizens requested construction of bridges between islands to resolve inconveniences of using boats between islands, and they demand that all the islands should be reachable from any other islands via one or more bridges.

The city mayor selected a number of pairs of islands, and ordered a building company to estimate the costs to build bridges between the pairs. With this estimate, the mayor has to decide the set of bridges to build, minimizing the total construction cost.

However, it is difficult for him to select the most cost-efficient set of bridges among those connecting all the islands. For example, three sets of bridges connect all the islands for the Sample Input 1. The bridges in each set are expressed by bold edges in Figure F.1.

Figure F.1. Three sets of bridges connecting all the islands for Sample Input 1

As the first step, he decided to build only those bridges which are contained in all the sets of bridges to connect all the islands and minimize the cost. We refer to such bridges as no alternative bridges. In Figure F.2, no alternative bridges are drawn as thick edges for the Sample Input 1, 2 and 3.

Write a program that advises the mayor which bridges are no alternative bridges for the given input.

Input

The input consists of several tests case.

Figure F.2. No alternative bridges for Sample Input 1, 2 and 3

N MS1 D1 C1⋮SM DM CMN MS1 D1 C1⋮SM DM CM

For each test, the first line contains two positive integers N and M . N represents the number of islands and each island is identified by an integer 1 through NM represents the number of the pairs of islands between which a bridge may be built.

Each line of the next M lines contains three integers SiDi and Ci (1 ≤ i ≤ M) which represent that it will cost Ci to build the bridge between islands Si and Di. You may assume 3 ≤ N ≤ 500, N − 1 ≤ M ≤ min(50000, N(N − 1)/2), 1 ≤ Si < Di ≤ N, and 1 ≤ Ci ≤ 10000. No two bridges connect the same pair of two islands, that is, if i ≠ j and Si = Sj , then Di ≠ Dj. If all the candidate bridges are built, all the islands are reachable from any other islands via one or more bridges.

Output

Output two integers, which mean the number of no alternative bridges and the sum of their construction cost, separated by a space.

Sample Input

4 4
1 2 3
1 3 3
2 3 3
2 4 3 4 4
1 2 3
1 3 5
2 3 3
2 4 3 4 4
1 2 3
1 3 1
2 3 3
2 4 3 3 3
1 2 1
2 3 1
1 3 1

Sample Output

1 3
3 9
2 4
0 0 可以组成多种最小生成树,求他们的公共边,和权值和;
这个n ,可以直接暴力枚举;
暴力出奇迹
暴力枚举一下就好了;
先求出一个最小生成树,记录边;
依次删边,看新的最小生成树的权值是否相等
不相等则证明,必须有的边,
 #include <cstdio>
#include <algorithm>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <cmath>
#include <map>
using namespace std;
const int maxn = 5e4 + ;
const int INF = 1e9 + ;
int fa[], vis[maxn];
struct node {
int u, v, w;
} qu[maxn];
int cmp(node a, node b) {
return a.w < b.w;
}
int find(int x) {
return fa[x] == x ? x : fa[x] = find(fa[x]);
}
int combine(int x, int y) {
int nx = find(x);
int ny = find(y);
if(nx != ny) {
fa[nx] = ny;
return ;
}
return ;
}
int kruskal(int num, int flag, int x) {
int sum = , k = ;
for(int i = ; i < num; i++) {
if(x == i) continue;
if(combine(qu[i].u, qu[i].v)) {
sum += qu[i].w;
if(flag) vis[k++] = i;
}
}
return sum;
}
int main() {
// freopen("DATA.txt", "r", stdin);
int n, m;
while(scanf("%d%d", &n, &m) != EOF) {
for (int i = ; i < m ; i++) {
scanf("%d%d%d", &qu[i].v, &qu[i].u, &qu[i].w);
}
sort(qu, qu + m, cmp);
int temp = kruskal(m, , -);
int ans1 = , ans2 = ;
for (int i = ; i <= n ; i++) fa[i] = i;
for (int i = ; i < n - ; i++ ) {
for (int j = ; j <= n ; j++) fa[j] = j;
int sum = kruskal(m, , vis[i]);
if (sum != temp) {
ans1++;
ans2 += qu[vis[i]].w;
}
}
printf("%d %d\n", ans1, ans2 );
}
return ;
}

There is No Alternative~最小生成树变形的更多相关文章

  1. bzoj 2753 最小生成树变形

    我们根据高度建图,将无向边转化为有向边 首先对于第一问,直接一个bfs搞定,得到ans1 然后第二问,我们就相当于要求找到一颗最小生成树, 满足相对来说深度小的高度大,也就是要以高度为优先级 假设现在 ...

  2. hdu 4081 最小生成树变形

    /*关于最小生成树的等效边,就是讲两个相同的集合连接在一起 先建立一个任意最小生成树,这条边分开的两个子树的节点最大的一个和为A,sum为最小生成树的权值和,B为sum-当前边的权值 不断枚举最小生成 ...

  3. POJ1789&amp;ZOJ2158--Truck History【最小生成树变形】

    链接:http://poj.org/problem?id=1789 题意:卡车公司有悠久的历史,它的每一种卡车都有一个唯一的字符串来表示,长度为7,它的全部卡车(除了第一辆)都是由曾经的卡车派生出来的 ...

  4. poj 2253 Frogger【最小生成树变形】【kruskal】

    Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 30427   Accepted: 9806 Descript ...

  5. UVa 1395 - Slim Span(最小生成树变形)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  6. HDU 4786 最小生成树变形 kruscal(13成都区域赛F)

    Fibonacci Tree Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  7. poj2377Bad Cowtractors (最小生成树变形之——最大生成树)

    题目链接:http://poj.org/problem?id=2377 Description Bessie has been hired to build a cheap internet netw ...

  8. UESTC 918 WHITE ALBUM --生成树变形

    最小生成树变形. 题目已经说得很清楚,要求到达每个房间,只需求一个最小生成树,这时边权和一定是最小的,并且那k个房间一定与所有点都有通路,即一定都可以逃脱. 但是有可能当所有点都有了该去的安全房间以后 ...

  9. pta7-20 畅通工程之局部最小花费问题(Kruskal算法)

    题目链接:https://pintia.cn/problem-sets/15/problems/897 题意:给出n个城镇,然后给出n×(n-1)/2条边,即每两个城镇之间的边,包含起始点,终点,修建 ...

随机推荐

  1. (七十一)关于UITableView退出崩溃的问题和滚动到底部的方法

    [TableView退出崩溃的问题] 最近在使用TableView时偶然发现在TableView中数据较多时,如果在滚动过程中退出TableView到上一界面,会引起程序的崩溃,经过网上查阅和思考我发 ...

  2. Java 8新特性探究(五)Base64详解

    BASE64 编码是一种常用的字符编码,在很多地方都会用到.但base64不是安全领域下的加密解密算法.能起到安全作用的效果很差,而且很容易破解,他核心作用应该是传输数据的正确性,有些网关或系统只能使 ...

  3. python的str()和repr()的区别

    str()一般是将数值转成字符串. repr()是将一个对象转成字符串显示,注意只是显示用,有些对象转成字符串没有直接的意思.如list,dict使用str()是无效的,但使用repr可以,这是为了看 ...

  4. (NO.00002)iOS游戏精灵战争雏形(八)

    子弹的初始化工作前2篇基本做好了,下面就是如何射出子弹. 通常来说,子弹射向目标对象,需要走一条直线.直线由2点定位,分别为发射点和目标点. 发射点就是开枪精灵自身的位置,目标点则为敌方精灵的位置,大 ...

  5. 分布式进阶(九)Ubuntu下使用nsenter进入Docker容器

    使用nsenter进入Docker容器 Docker容器运行后,如何进入容器进行操作呢?起初我是用SSH.如果只启动一个容器,用SSH还能应付,只需要将容器的22端口映射到本机的一个端口即可.当我启动 ...

  6. Java之谜 —— 来自Neal Gafter的演讲

    翻译人员: 铁锚 翻译日期: 2013年11月20日 原文链接: A Puzzle from "A Brief History of the (Java) World and a Peek ...

  7. (四十七)Quartz2D引擎初步

    Quartz2D是跨平台的,同时支持iOS与Mac. 支持圆型裁剪,可以实现圆形头像等功能,也支持手势解锁.折线图等的制作. 对于复杂的UI界面,还可以通过Quartz2D将控件内部的结构画出来,可用 ...

  8. 字符转码开源库libiconv目前还不支持64位

    最新版的libiconv 1.14目前还不支持64位系统,只能编译出32位库. libiconv 1.14下载地址: http://ftp.gnu.org/pub/gnu/libiconv/libic ...

  9. Visual Studio 2010利用libxl读写excel表格数据

    C++读写数据,一般通过txt文件,但是随着数据量的增大,采集数据时运用excel表格的优势得以逐步体现.本文主要介绍一下运用第三方库libxl,对excel表格数据进行读写.分为三个部分,第一部分是 ...

  10. Learning ROS for Robotics Programming Second Edition学习笔记(七) indigo PCL xtion pro live

    中文译著已经出版,详情请参考:http://blog.csdn.net/ZhangRelay/article/category/6506865 Learning ROS forRobotics Pro ...