There is No Alternative~最小生成树变形
Description
ICPC (Isles of Coral Park City) consist of several beautiful islands.
The citizens requested construction of bridges between islands to resolve inconveniences of using boats between islands, and they demand that all the islands should be reachable from any other islands via one or more bridges.
The city mayor selected a number of pairs of islands, and ordered a building company to estimate the costs to build bridges between the pairs. With this estimate, the mayor has to decide the set of bridges to build, minimizing the total construction cost.
However, it is difficult for him to select the most cost-efficient set of bridges among those connecting all the islands. For example, three sets of bridges connect all the islands for the Sample Input 1. The bridges in each set are expressed by bold edges in Figure F.1.
Figure F.1. Three sets of bridges connecting all the islands for Sample Input 1
As the first step, he decided to build only those bridges which are contained in all the sets of bridges to connect all the islands and minimize the cost. We refer to such bridges as no alternative bridges. In Figure F.2, no alternative bridges are drawn as thick edges for the Sample Input 1, 2 and 3.
Write a program that advises the mayor which bridges are no alternative bridges for the given input.
Input
The input consists of several tests case.
Figure F.2. No alternative bridges for Sample Input 1, 2 and 3
For each test, the first line contains two positive integers N and M . N represents the number of islands and each island is identified by an integer 1 through N. M represents the number of the pairs of islands between which a bridge may be built.
Each line of the next M lines contains three integers Si, Di and Ci (1 ≤ i ≤ M) which represent that it will cost Ci to build the bridge between islands Si and Di. You may assume 3 ≤ N ≤ 500, N − 1 ≤ M ≤ min(50000, N(N − 1)/2), 1 ≤ Si < Di ≤ N, and 1 ≤ Ci ≤ 10000. No two bridges connect the same pair of two islands, that is, if i ≠ j and Si = Sj , then Di ≠ Dj. If all the candidate bridges are built, all the islands are reachable from any other islands via one or more bridges.
Output
Output two integers, which mean the number of no alternative bridges and the sum of their construction cost, separated by a space.
Sample Input
4 4
1 2 3
1 3 3
2 3 3
2 4 3 4 4
1 2 3
1 3 5
2 3 3
2 4 3 4 4
1 2 3
1 3 1
2 3 3
2 4 3 3 3
1 2 1
2 3 1
1 3 1
Sample Output
1 3
3 9
2 4
0 0 可以组成多种最小生成树,求他们的公共边,和权值和;
这个n ,可以直接暴力枚举;
暴力出奇迹
暴力枚举一下就好了;
先求出一个最小生成树,记录边;
依次删边,看新的最小生成树的权值是否相等
不相等则证明,必须有的边,
#include <cstdio>
#include <algorithm>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <cmath>
#include <map>
using namespace std;
const int maxn = 5e4 + ;
const int INF = 1e9 + ;
int fa[], vis[maxn];
struct node {
int u, v, w;
} qu[maxn];
int cmp(node a, node b) {
return a.w < b.w;
}
int find(int x) {
return fa[x] == x ? x : fa[x] = find(fa[x]);
}
int combine(int x, int y) {
int nx = find(x);
int ny = find(y);
if(nx != ny) {
fa[nx] = ny;
return ;
}
return ;
}
int kruskal(int num, int flag, int x) {
int sum = , k = ;
for(int i = ; i < num; i++) {
if(x == i) continue;
if(combine(qu[i].u, qu[i].v)) {
sum += qu[i].w;
if(flag) vis[k++] = i;
}
}
return sum;
}
int main() {
// freopen("DATA.txt", "r", stdin);
int n, m;
while(scanf("%d%d", &n, &m) != EOF) {
for (int i = ; i < m ; i++) {
scanf("%d%d%d", &qu[i].v, &qu[i].u, &qu[i].w);
}
sort(qu, qu + m, cmp);
int temp = kruskal(m, , -);
int ans1 = , ans2 = ;
for (int i = ; i <= n ; i++) fa[i] = i;
for (int i = ; i < n - ; i++ ) {
for (int j = ; j <= n ; j++) fa[j] = j;
int sum = kruskal(m, , vis[i]);
if (sum != temp) {
ans1++;
ans2 += qu[vis[i]].w;
}
}
printf("%d %d\n", ans1, ans2 );
}
return ;
}
There is No Alternative~最小生成树变形的更多相关文章
- bzoj 2753 最小生成树变形
我们根据高度建图,将无向边转化为有向边 首先对于第一问,直接一个bfs搞定,得到ans1 然后第二问,我们就相当于要求找到一颗最小生成树, 满足相对来说深度小的高度大,也就是要以高度为优先级 假设现在 ...
- hdu 4081 最小生成树变形
/*关于最小生成树的等效边,就是讲两个相同的集合连接在一起 先建立一个任意最小生成树,这条边分开的两个子树的节点最大的一个和为A,sum为最小生成树的权值和,B为sum-当前边的权值 不断枚举最小生成 ...
- POJ1789&ZOJ2158--Truck History【最小生成树变形】
链接:http://poj.org/problem?id=1789 题意:卡车公司有悠久的历史,它的每一种卡车都有一个唯一的字符串来表示,长度为7,它的全部卡车(除了第一辆)都是由曾经的卡车派生出来的 ...
- poj 2253 Frogger【最小生成树变形】【kruskal】
Frogger Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 30427 Accepted: 9806 Descript ...
- UVa 1395 - Slim Span(最小生成树变形)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- HDU 4786 最小生成树变形 kruscal(13成都区域赛F)
Fibonacci Tree Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- poj2377Bad Cowtractors (最小生成树变形之——最大生成树)
题目链接:http://poj.org/problem?id=2377 Description Bessie has been hired to build a cheap internet netw ...
- UESTC 918 WHITE ALBUM --生成树变形
最小生成树变形. 题目已经说得很清楚,要求到达每个房间,只需求一个最小生成树,这时边权和一定是最小的,并且那k个房间一定与所有点都有通路,即一定都可以逃脱. 但是有可能当所有点都有了该去的安全房间以后 ...
- pta7-20 畅通工程之局部最小花费问题(Kruskal算法)
题目链接:https://pintia.cn/problem-sets/15/problems/897 题意:给出n个城镇,然后给出n×(n-1)/2条边,即每两个城镇之间的边,包含起始点,终点,修建 ...
随机推荐
- 现代控制理论习题解答与Matlab程序示例
现代控制理论习题解答与Matlab程序示例 现代控制理论 第三版 课后习题参考解答: http://download.csdn.net/detail/zhangrelay/9544934 下面给出部分 ...
- AngularJS 入门教程 $http is not defined 解决方案
采用从git下载的教程, www.angularjs.cn 版本的 入门教程,在第5步的时候 签出文件: git checkout -f step-5 运行将会提示: $http is not def ...
- python类定义
在我的收藏中有一篇特别详细的类讲解 此处部分内容引自:http://blog.sina.com.cn/s/blog_59b6af690101bfem.html class myclass: 'this ...
- Leetcode_83_Remove Duplicates from Sorted List
本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/41728739 Given a sorted linked ...
- java 如何自定义异常 用代码展示 真心靠谱
先建两个自定义的异常类 ChushufuException类 class ChushufuException extends Exception { public ChushufuException( ...
- 《java入门第一季》之面向对象(重头戏多态)
接下来介绍java第三大特性--多态性 /* 多态:同一个对象(事物),在不同时刻体现出来的不同状态. 举例: 猫是猫,猫是动物. 水(液体,固体,气态). 多态的前提: A:要有继承关系. B:要有 ...
- Java集合之Vector
Vector是矢量队列,它继承了AbstractList,实现了List. RandomAccess, Cloneable, java.io.Serializable接口. Vector接口依赖图: ...
- windows下追踪路由
追踪路由 tracert 目标ip/域名 测试两个ip是否畅通 ping 目标ip 在windows查看ip情况 ipconfig linux/unix下查看ip情况的使用 ifconfig
- DiskLruCache硬盘缓存技术详解
上次讲了使用内存缓存LruCache去加载很多图片而不造成OOM,而这种缓存的特点是在应用程序运行时管理内存中的资源(图片)的存储和释放,如果LruCache中有一张图片被释放了,再次加载该图片时需要 ...
- 如何解决Asp.Net中不能上传压缩文件的问题
在使用Asp.Net自带的服务器端控件Fileupload上传文件时,可能会出现不能上传压缩文件的问题,此时可以通过下面的方法解决: 在<system.web>中添加: <httpR ...