4591: [Shoi2015]超能粒子炮·改

题意:多组询问,求

\[S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^{18}
\]


lucas定理,展开一层然后整除分块一下,不完整的块单独拿出来,就是

\[S(n,k) = S(\frac{n}{p}, \frac{k}{p}-1)S(n \bmod p, p-1) + \binom{\frac{n}{p}}{ \frac{k}{p}} S(n \bmod p, k \bmod p)
\]

预处理\(n,k \le 2333\)的

单次询问复杂度log^2

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N = 2500, P = 2333;
inline ll read() {
char c=getchar(); ll x=0,f=1;
while(c<'0'||c>'9') {if(c=='-')f=-1; c=getchar();}
while(c>='0'&&c<='9') {x=x*10+c-'0'; c=getchar();}
return x*f;
} ll n, k;
int c[N][N], s[N][N];
inline ll lucas(ll n, ll m) {
if(n < m) return 0;
ll ans = 1;
for(; m; n /= P, m /= P) ans = ans * c[n % P][m % P] %P;
return ans;
}
ll S(ll n, ll k) {
if(n <= P && k <= P) return s[n][k];
ll ans = (S(n / P, k / P - 1) * S(n % P, P - 1) + lucas(n / P, k / P) * S(n % P, k % P)) %P;
return ans;
}
int main() {
freopen("in", "r", stdin);
int T = read();
c[0][0] = 1;
for(int i=1; i<=P; i++) {
c[i][0] = 1;
for(int j=1; j<=i; j++) c[i][j] = (c[i-1][j] + c[i-1][j-1]) %P;
}
for(int i=0; i<=P; i++) {
s[i][0] = c[i][0];
for(int j=1; j<=P; j++) s[i][j] = (s[i][j-1] + c[i][j]) %P;
}
while(T--) {
n = read(); k = read();
printf("%lld\n", S(n, k));
}
}

bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]的更多相关文章

  1. Bzoj 4591: [Shoi2015]超能粒子炮·改 数论,Lucas定理,排列组合

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 178  Solved: 70[Submit][Stat ...

  2. 【bzoj4591】[Shoi2015]超能粒子炮·改 Lucas定理

    题目描述 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提 ...

  3. [bzoj4591][Shoi2015][超能粒子炮·改] (lucas定理+组合计数)

    Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...

  4. bzoj 4591 [Shoi2015]超能粒子炮·改——组合数前缀和

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4591 先说说自己的想法: 从组合意义的角度考虑,从n个里选<=k个,就添加k个空位置, ...

  5. [BZOJ4591][SHOI2015]超能粒子炮·改(Lucas定理+数位DP)

    大组合数取模可以想到Lucas,考虑Lucas的意义,实际上是把数看成P进制计算. 于是问题变成求1~k的所有2333进制数上每一位数的组合数之积. 数位DP,f[i][0/1]表示从高到低第i位,这 ...

  6. BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理

    BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理 Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以 ...

  7. P4345 [SHOI2015]超能粒子炮·改 Lucas

    \(\color{#0066ff}{ 题目描述 }\) 曾经发明了脑洞治疗仪与超能粒子炮的发明家 SHTSC 又公开了他的新发明:超能粒子炮・改--一种可以发射威力更加强大的粒子流的神秘装置. 超能粒 ...

  8. Luogu4345 SHOI2015 超能粒子炮·改 Lucas、数位DP

    传送门 模数小,还是个质数,Lucas没得跑 考虑Lucas的实质.设\(a = \sum\limits_{i=0}^5 a_i 2333^i\),\(b = \sum\limits_{i=0}^5 ...

  9. 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)

    [BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...

随机推荐

  1. HDU4355-Party All the Time-三分

    Party All the Time Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  2. c++(排序二叉树删除)

    相比较节点的添加,平衡二叉树的删除要复杂一些.因为在删除的过程中,你要考虑到不同的情况,针对每一种不同的情况,你要有针对性的反应和调整.所以在代码编写的过程中,我们可以一边写代码,一边写测试用例.编写 ...

  3. 在echarts3中使用字符云

    echarts2的官方API里是带有字符云的,但到了echarts3就被从官网上移除了,想要使用的话可以从github上下载: 下载地址:https://github.com/ecomfe/echar ...

  4. PHPStorm+PHPStudy新建第一个PHP项目

    img { max-width: 100% } 熟悉了.net的编程,偶尔也来客串一下PHP.前几天闲来无事随便加了一个PHP的开发群,入群之后傻眼了,群里有大小各位程工1600多人,所以决定学习一下 ...

  5. webpack打包非模块化js

    本文主要记录了非模块化js如何使用webpack打包 模块化打包实现方式 webpack是模块打包工具,通过入口文件递归遍历其依赖图谱,绝对是打包神器. bar.js export default f ...

  6. Yourphp  使用说明

    https://wenku.baidu.com/view/c8d2e667cc1755270722088a.html 这个是站点的配置信息,比如:网站名称. LOGO .网站标题等 推荐位:个别可能用 ...

  7. nginx.conf文件

    user  www www; worker_processes auto; error_log  /home/wwwlogs/nginx_error.log  crit; pid        /us ...

  8. 读书笔记——《C++ Concurrency IN ACTION》

    =================================版权声明================================= 版权声明:原创文章 禁止转载  请通过右侧公告中的“联系邮 ...

  9. 实现LNMP

    实现LNMP 环境: linux系统机器 A:一台N:nginx,ip:192.168.213.251 B:一台P:php-fpm,php-mysql ,ip:192.168.213.253 C:一台 ...

  10. ublime Text 3安装与使用

    ublime Text 3安装与使用 工具 2015-07-30 10:46 0 34 工欲善其事,必先利其器.好的工具帮助我们节省大量的工作时间,好用的插件使工具更强大. 1. 下载 可以从官网 h ...