[BZOJ1880] [Sdoi2009] Elaxia的路线 (SPFA & 拓扑排序)
Description
Input
Output
Sample Input
1 6 7 8
1 2 1
2 5 2
2 3 3
3 4 2
3 9 5
4 5 3
4 6 4
4 7 2
5 8 1
7 9 1
Sample Output
HINT
对于30%的数据,N ≤ 100;
对于60%的数据,N ≤ 1000;
对于100%的数据,N ≤ 1500,输入数据保证没有重边和自环。
Source
Solution
补个条件:$m\leq 500000$
如果$dis_{s->u_i}+w_i=dis_{t->v_i}$,那么边$i$才可能成为答案
这些边组成的图一定是一个拓扑图,走一遍最长链即可。
其实主要的坑点在于因为是无向图,所以需要反着做一遍
也就是说,$x_1$->$y_1$和$y_2$->$x_2$的公共路径也可能是答案,也就是说,原题意是错的= =b
#include <bits/stdc++.h>
using namespace std;
struct edge
{
int v, w, nxt;
}e[];
int fst[][], dis[][], q[], indeg[];
int n, etot, sss1, ttt1, sss2, ttt2;
bool inq[]; void addedge(int *f, int u, int v, int w)
{
e[++etot] = (edge){v, w, f[u]}, f[u] = etot;
} bool check(int u, int i)
{
if(dis[][u] + e[i].w + dis[][e[i].v] != dis[][ttt1]) return false;
return dis[][u] + e[i].w + dis[][e[i].v] == dis[][ttt2];
} void SPFA(int sss, int *d)
{
int front = , back;
memset(d, , );
q[back = ] = sss, d[sss] = , inq[sss] = true;
while(front != back)
{
int u = q[++front & ];
front &= , inq[u] = false;
for(int i = fst[][u]; i; i = e[i].nxt)
if(d[e[i].v] > d[u] + e[i].w)
{
d[e[i].v] = d[u] + e[i].w;
if(!inq[e[i].v])
{
q[++back & ] = e[i].v;
back &= , inq[e[i].v] = true;
}
}
}
} int Topo_sort()
{
int front = , back = , ans = ;
for(int i = ; i <= n; ++i)
if(!indeg[i]) q[++back] = i;
while(front != back)
{
int u = q[++front];
for(int i = fst[][u]; i; i = e[i].nxt)
{
int v = e[i].v, w = e[i].w;
dis[][v] = max(dis[][v], dis[][u] + w);
if(!--indeg[e[i].v]) q[++back] = v;
}
}
for(int i = ; i <= n; ++i)
ans = max(ans, dis[][i]);
return ans;
} int main()
{
int m, u, v, w, ans;
scanf("%d%d", &n, &m);
scanf("%d%d%d%d", &sss1, &ttt1, &sss2, &ttt2);
for(int i = ; i <= m; ++i)
{
scanf("%d%d%d", &u, &v, &w);
addedge(fst[], u, v, w);
addedge(fst[], v, u, w);
}
SPFA(sss1, dis[]), SPFA(ttt1, dis[]);
SPFA(sss2, dis[]), SPFA(ttt2, dis[]);
for(int i = ; i <= n; ++i)
for(int j = fst[][i]; j; j = e[j].nxt)
if(check(i, j))
{
addedge(fst[], i, e[j].v, e[j].w);
++indeg[e[j].v];
}
ans = Topo_sort();
memset(fst[], , sizeof(fst[]));
memset(dis[], , sizeof(dis[]));
memset(indeg, , sizeof(indeg));
swap(sss2, ttt2);
SPFA(sss2, dis[]), SPFA(ttt2, dis[]);
for(int i = ; i <= n; ++i)
for(int j = fst[][i]; j; j = e[j].nxt)
if(check(i, j))
{
addedge(fst[], i, e[j].v, e[j].w);
++indeg[e[j].v];
}
ans = max(ans, Topo_sort());
printf("%d\n", ans);
return ;
}
[BZOJ1880] [Sdoi2009] Elaxia的路线 (SPFA & 拓扑排序)的更多相关文章
- bzoj1880: [Sdoi2009]Elaxia的路线(spfa,拓扑排序最长路)
1880: [Sdoi2009]Elaxia的路线 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 1944 Solved: 759[Submit][St ...
- [luogu2149][bzoj1880][SDOI2009]Elaxia的路线【拓扑排序+最短路+DP】
题目描述 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. Elaxia和w每天都要奔波于宿舍和实验室之间,他们 希望在节约时间 ...
- BZOJ1880: [Sdoi2009]Elaxia的路线(最短路)
1880: [Sdoi2009]Elaxia的路线 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 2049 Solved: 805 题目链接:https ...
- BZOJ1880:[SDOI2009]Elaxia的路线(最短路,拓扑排序)
Description 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w**每天都要奔波于宿舍和实验室之间, ...
- BZOJ1880: [Sdoi2009]Elaxia的路线
题意:求最短路最长公共距离. 考虑每一条边,如果满足dis(s1,u)+len+dis(v,t1)==dis(s1,t1) && dis(s2,u)+len+dis(v,t2)==di ...
- BZOJ1880 [Sdoi2009]Elaxia的路线 【最短路 + dp】
题目 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w每天都要奔波于宿舍和实验室之间,他们 希望在节约时间的前提 ...
- 【BZOJ1880】[SDOI2009]Elaxia的路线 (最短路+拓扑排序)
[SDOI2009]Elaxia的路线 题目描述 最近,\(Elaxia\)和\(w**\)的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. \(El ...
- BZOJ-1880 Elaxia的路线 SPFA+枚举
1880: [Sdoi2009]Elaxia的路线 Time Limit: 4 Sec Memory Limit: 64 MB Submit: 921 Solved: 354 [Submit][Sta ...
- 【BZOJ1880】[Sdoi2009]Elaxia的路线(最短路)
[BZOJ1880][Sdoi2009]Elaxia的路线(最短路) 题面 BZOJ 洛谷 题解 假装我们知道了任意两点间的最短路,那么我们怎么求解答案呢? 不难发现公共路径一定是一段连续的路径(如果 ...
随机推荐
- PHP实现session对象封装
<?php class Session { private $db; // 设置数据库变量 private $expiry = 3600; // 设置Session失效时间 public fun ...
- iperf命令
iperf命令网络测试 iperf命令是一个网络性能测试工具.iperf可以测试TCP和UDP带宽质量.iperf可以测量最大TCP带宽,具有多种参数和UDP特性.iperf可以报告带宽,延迟抖动和数 ...
- 如何知道你的linux是什么时候安装的
在安装系统时,每个分区下都会有一个 lost+found,而且这个目录的创建时间是和该分区创建的时间一样的.所以如果想知道你的系统是什么时候安装的,只需要看这个目录的创建时间即可. 通常情况下,我们分 ...
- [HEOI2016]求和 sum
[HEOI2016]求和 sum 标签: NTT cdq分治 多项式求逆 第二类斯特林数 Description 求\[\sum_{i=0}^n\sum_{j=0}^i S(i,j)×2^j×(j!) ...
- snowflake 分布式唯一ID生成器
本文来自我的github pages博客http://galengao.github.io/ 即www.gaohuirong.cn 摘要: 原文参考运维生存和开源中国上的代码整理 我的环境是pytho ...
- Linux一些常用操作
1.linux swap分区 可采用文件的方式 dd if=/dev/zero of=/var/swap bs=1024 count=2048000 mkswap /var/swap swapon / ...
- Linux-PATH_环境变量
PATH变量 是linux系统里的一个环境变量,系统已经定义好了,我们不需要再定义. 作用: 是linux里使用的命令都存在在PATH变量后面指定的目录下,我们使用命令 ...
- PHP中::的使用
访问静态变量,静态属性,const修饰的变量.
- hihoCoder1330 数组重排
题意 小Hi想知道,如果他每次都按照一种固定的顺序重排数组,那么最少经过几次重排之后数组会恢复初始的顺序? 具体来讲,给定一个1 - N 的排列 P,小Hi每次重排都是把第 i 个元素放到第 Pi个位 ...
- Minikube之Win10单机部署
Kubernetes(k8s)是自动化容器操作的开源平台,基于这个平台,你可以进行容器部署,资源调度和集群扩容等操作.如果你曾经用过Docker部署容器,那么可以将Docker看成Kubernetes ...