[BZOJ1880] [Sdoi2009] Elaxia的路线 (SPFA & 拓扑排序)
Description
Input
Output
Sample Input
1 6 7 8
1 2 1
2 5 2
2 3 3
3 4 2
3 9 5
4 5 3
4 6 4
4 7 2
5 8 1
7 9 1
Sample Output
HINT
对于30%的数据,N ≤ 100;
对于60%的数据,N ≤ 1000;
对于100%的数据,N ≤ 1500,输入数据保证没有重边和自环。
Source
Solution
补个条件:$m\leq 500000$
如果$dis_{s->u_i}+w_i=dis_{t->v_i}$,那么边$i$才可能成为答案
这些边组成的图一定是一个拓扑图,走一遍最长链即可。
其实主要的坑点在于因为是无向图,所以需要反着做一遍
也就是说,$x_1$->$y_1$和$y_2$->$x_2$的公共路径也可能是答案,也就是说,原题意是错的= =b
#include <bits/stdc++.h>
using namespace std;
struct edge
{
int v, w, nxt;
}e[];
int fst[][], dis[][], q[], indeg[];
int n, etot, sss1, ttt1, sss2, ttt2;
bool inq[]; void addedge(int *f, int u, int v, int w)
{
e[++etot] = (edge){v, w, f[u]}, f[u] = etot;
} bool check(int u, int i)
{
if(dis[][u] + e[i].w + dis[][e[i].v] != dis[][ttt1]) return false;
return dis[][u] + e[i].w + dis[][e[i].v] == dis[][ttt2];
} void SPFA(int sss, int *d)
{
int front = , back;
memset(d, , );
q[back = ] = sss, d[sss] = , inq[sss] = true;
while(front != back)
{
int u = q[++front & ];
front &= , inq[u] = false;
for(int i = fst[][u]; i; i = e[i].nxt)
if(d[e[i].v] > d[u] + e[i].w)
{
d[e[i].v] = d[u] + e[i].w;
if(!inq[e[i].v])
{
q[++back & ] = e[i].v;
back &= , inq[e[i].v] = true;
}
}
}
} int Topo_sort()
{
int front = , back = , ans = ;
for(int i = ; i <= n; ++i)
if(!indeg[i]) q[++back] = i;
while(front != back)
{
int u = q[++front];
for(int i = fst[][u]; i; i = e[i].nxt)
{
int v = e[i].v, w = e[i].w;
dis[][v] = max(dis[][v], dis[][u] + w);
if(!--indeg[e[i].v]) q[++back] = v;
}
}
for(int i = ; i <= n; ++i)
ans = max(ans, dis[][i]);
return ans;
} int main()
{
int m, u, v, w, ans;
scanf("%d%d", &n, &m);
scanf("%d%d%d%d", &sss1, &ttt1, &sss2, &ttt2);
for(int i = ; i <= m; ++i)
{
scanf("%d%d%d", &u, &v, &w);
addedge(fst[], u, v, w);
addedge(fst[], v, u, w);
}
SPFA(sss1, dis[]), SPFA(ttt1, dis[]);
SPFA(sss2, dis[]), SPFA(ttt2, dis[]);
for(int i = ; i <= n; ++i)
for(int j = fst[][i]; j; j = e[j].nxt)
if(check(i, j))
{
addedge(fst[], i, e[j].v, e[j].w);
++indeg[e[j].v];
}
ans = Topo_sort();
memset(fst[], , sizeof(fst[]));
memset(dis[], , sizeof(dis[]));
memset(indeg, , sizeof(indeg));
swap(sss2, ttt2);
SPFA(sss2, dis[]), SPFA(ttt2, dis[]);
for(int i = ; i <= n; ++i)
for(int j = fst[][i]; j; j = e[j].nxt)
if(check(i, j))
{
addedge(fst[], i, e[j].v, e[j].w);
++indeg[e[j].v];
}
ans = max(ans, Topo_sort());
printf("%d\n", ans);
return ;
}
[BZOJ1880] [Sdoi2009] Elaxia的路线 (SPFA & 拓扑排序)的更多相关文章
- bzoj1880: [Sdoi2009]Elaxia的路线(spfa,拓扑排序最长路)
1880: [Sdoi2009]Elaxia的路线 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 1944 Solved: 759[Submit][St ...
- [luogu2149][bzoj1880][SDOI2009]Elaxia的路线【拓扑排序+最短路+DP】
题目描述 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. Elaxia和w每天都要奔波于宿舍和实验室之间,他们 希望在节约时间 ...
- BZOJ1880: [Sdoi2009]Elaxia的路线(最短路)
1880: [Sdoi2009]Elaxia的路线 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 2049 Solved: 805 题目链接:https ...
- BZOJ1880:[SDOI2009]Elaxia的路线(最短路,拓扑排序)
Description 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w**每天都要奔波于宿舍和实验室之间, ...
- BZOJ1880: [Sdoi2009]Elaxia的路线
题意:求最短路最长公共距离. 考虑每一条边,如果满足dis(s1,u)+len+dis(v,t1)==dis(s1,t1) && dis(s2,u)+len+dis(v,t2)==di ...
- BZOJ1880 [Sdoi2009]Elaxia的路线 【最短路 + dp】
题目 最近,Elaxia和w的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间.Elaxia和w每天都要奔波于宿舍和实验室之间,他们 希望在节约时间的前提 ...
- 【BZOJ1880】[SDOI2009]Elaxia的路线 (最短路+拓扑排序)
[SDOI2009]Elaxia的路线 题目描述 最近,\(Elaxia\)和\(w**\)的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. \(El ...
- BZOJ-1880 Elaxia的路线 SPFA+枚举
1880: [Sdoi2009]Elaxia的路线 Time Limit: 4 Sec Memory Limit: 64 MB Submit: 921 Solved: 354 [Submit][Sta ...
- 【BZOJ1880】[Sdoi2009]Elaxia的路线(最短路)
[BZOJ1880][Sdoi2009]Elaxia的路线(最短路) 题面 BZOJ 洛谷 题解 假装我们知道了任意两点间的最短路,那么我们怎么求解答案呢? 不难发现公共路径一定是一段连续的路径(如果 ...
随机推荐
- Chrome浏览器的自动安装下载工具
链接 https://www.google.com/chrome/browser/desktop/index.html?brand=CHWL&utm_campaign=en&utm_s ...
- Selenium常用API用法示例集----下拉框、文本域及富文本框、弹窗、JS、frame、文件上传和下载
元素识别方法.一组元素定位.鼠标操作.多窗口处理.下拉框.文本域及富文本框.弹窗.JS.frame.文件上传和下载 元素识别方法: driver.find_element_by_id() driver ...
- 对TCP三次握手四次分手还不清楚的速度进,超简单解析,明白了就很好记!
关于TCP三次握手四次分手,之前看资料解释的都很笼统,很多地方都不是很明白,所以很难记,前几天看的一个博客豁然开朗,可惜现在找不到了.现在把之前的疑惑总结起来,方便一下大家. 先上个TCP三次握手和四 ...
- nxlog4go Log Levels and Pattern Layout
Log levels nxlog4go provides log levels as below: type Level int const ( FINEST Level = iota FINE DE ...
- 【剑指offer】04替换空格,C++实现
0.前言 # 替换空格为字符串部分的题目,剑指offer中字符串系列的文章地址,剑指offer全系列文章地址 1.题目 # 请实现一个函数,将一个字符串中的空格替换成"%20".例 ...
- python语言基础语法笔记<note2--面向对象编程>
Python面向对象编程(OOP) 一.面向对象过程的优点特征: 封装 模型的特征和能力打包在一起 模型的改变由模型自身完成 隐藏模型的细节,外界只能使用,不能改变 继承 符合自然界分类规律 快速实现 ...
- linux中的三个文件时间
Linux系统文件有三个主要的时间属性,分别是ctime(change time), atime(access time), mtime(modify time). 后来为了解决atime的性能问题, ...
- SQL 分组统计 行转列 CASE WHEN 的使用
原文地址:http://blog.itpub.net/26451903/viewspace-733526 原文在分组统计部分 sql是有问题的 本文已将sql改正 已用红色标记 Cas ...
- yum仓库详细解读
Yum:Yellowdog Updater,Modified的简称,起初由yellow dog发行版的开发者Terra Soft研发,用Python编写,后经杜克大学的Linux@Duke开发团队进行 ...
- Centos安装jdk8
1.下载jdk1.8的tar cd /usr/local/src #切换到该目录下 wget url #下载jdk8的tar包 2.下载完成后解压tar包 tar -zxvf jdk-8u152-li ...