Description

乡间有一条笔直而长的路称为“米道”。沿着这条米道上 R 块稻田,每块稻田的坐标均
为一个 1 到 L 之间(含 1 和 L)的整数。这些稻田按照坐标以不减的顺序给出,即对于 0 ≤ i <
R,稻田 i 的坐标 X[i]满足 1 ≤ X[0] ≤ ... ≤ X[R-1] ≤ L。 
注意:可能有多块稻田位于同一个坐标上。 
我们计划建造一个米仓用于储存尽可能多的稻米。和稻田一样,米仓将建在米道上,其
坐标也是一个 1 到 L 之间的整数(含 1 和 L)。这个米仓可以建在满足上述条件的任一个位
置上,包括那些原来已有一个或多个稻田存在的位置。 
在收获季节,每一块稻田刚好出产一滿货车的稻米。为了将这些稻米运到米仓,需要雇
用一位货车司机来运米。司机的收费是每一满货车运送一个单位的距离收取 1 元。換言之,
将稻米从特定的稻田运到米仓的费用在数值上等于稻田坐标与米仓坐标之差的绝对值。 
不幸的是,今年预算有限,我们至多只能花费 B 元运费。你的任务是要帮我们找出一个
建造米仓的位置,可以收集到尽可能多的稻米。

Input

第一行 三个整数 R L B
接下来R行 每行一个整数 表示X[i]

Output

一个整数 最多稻米数

Sample Input

5 20 6
1
2
10
12
14

Sample Output

3

HINT

1 ≤ R ≤ 100,000
1 ≤ L ≤ 1,000,000,000
0 ≤ B ≤ 2,000,000,000,000,000

题解

做的第二道$IOI$的题,虽然还是水题。NOIp小孩都会做。

我们考虑二分答案,对于每个二分的答案$mid$,其实其另外一个性质就是它是在数轴上包含$mid$个点的区间。

现在我们的问题就是这$mid$个点的区间中各个点到某一位置的最小值是否$<=B$。

一个有价值的性质就是:数轴上$n$个点,若$n$为奇,那么所有点到点$\lceil {n \over 2} \rceil$的总距离是最短的,而若$n$为偶,那么到$n \over 2$或${n \over 2}+1$的距离相等且最短。

那么我们现在显然就是在数轴上找出所有包含$mid$个点的区间,并计算其最小距离和是否$<=B$。

统计总距离:对于检查的$r$,我们再取$mid = {r \over 2}$。

随着$pos-1$(中点)向右移到$pos$,我们统计的值满足下列变换:

     tot -= abs(a[pos-(r&)]-a[pos-(r&)-mid]);
tot += abs(a[pos+mid]-a[pos]);

附张图片便于理解上式:

 //It is made by Awson on 2017.10.17
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <stack>
#include <queue>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Abs(x) ((x) < 0 ? (-(x)) : (x))
using namespace std;
const int N = ; LL n, m, b;
LL a[N+]; bool check(LL r) {
LL mid = r>>, pos = mid+(r&), tot = ;
for (int i = ; i <= r; i++) tot += Abs(a[i]-a[pos]);
if (tot <= b) return true;
for (pos++; pos+mid <= n; pos++) {
tot -= Abs(a[pos-(r&)]-a[pos-(r&)-mid]);
tot += Abs(a[pos+mid]-a[pos]);
if (tot <= b) return true;
}
return false;
}
void work() {
scanf("%lld%lld%lld", &n, &m, &b);
for (int i = ; i <= n; i++) scanf("%lld", &a[i]);
LL L = , R = n, ans = ;
while (L <= R) {
LL mid = (L+R)>>;
if (check(mid)) ans = mid, L = mid+;
else R = mid-;
}
printf("%lld\n", ans);
}
int main() {
work();
return ;
}

[IOI 2011]ricehub的更多相关文章

  1. 【BZOJ 2599】【IOI 2011】Race 点分治

    裸的点分治,然而我因为循环赋值$s$时把$i <= k$写成$i <= n$了,WA了好长时间 #include<cstdio> #include<cstring> ...

  2. [IOI 2011]Race

    Description 给一棵树,每条边有非负权.求一条简单路径,权值和等于K,且边的数量最小.N <= 200000, 1 <= K <= 1000000 Input 第一行 两个 ...

  3. 洛谷 P4149 [ IOI 2011 ] Race —— 点分治

    题目:https://www.luogu.org/problemnew/show/P4149 仍然是点分治: 不过因为是取 min ,所以不能用容斥,那么子树之间就必须分开算,记录桶时注意这个: 每次 ...

  4. 【IOI 2011】Race

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=2599 [算法] 点分治 [代码] #include<bits/stdc++.h ...

  5. 【题解】Arpa's letter-marked tree and Mehrdad's Dokhtar-kosh paths Codeforces 741D DSU on Tree

    Prelude 很好的模板题. 传送到Codeforces:(* ̄3 ̄)╭ Solution 首先要会DSU on Tree,不会的看这里:(❤ ω ❤). 众所周知DSU on Tree是可以用来处 ...

  6. bzoj2600 [Ioi2011]ricehub

    Description 乡间有一条笔直而长的路称为“米道”.沿着这条米道上 R 块稻田,每块稻田的坐标均为一个 1 到 L 之间(含 1 和 L)的整数.这些稻田按照坐标以不减的顺序给出,即对于 0 ...

  7. [C#项目开源] MongoDB 可视化管理工具 (2011年10月-至今)

    正文 该项目从2011年10月开始开发,知道现在已经有整整5年了.MongoDB也从一开始的大红大紫到现在趋于平淡. MongoCola这个工具在一开始定位的时候只是一个Windows版本的工具,期间 ...

  8. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

  9. Step by step Dynamics CRM 2011升级到Dynamics CRM 2013

    原创地址:http://www.cnblogs.com/jfzhu/p/4018153.html 转载请注明出处 (一)检查Customizations 从2011升级到2013有一些legacy f ...

随机推荐

  1. Java连接mysql——Establishing SSL connection without server's identity verification is not recommended.

    Establishing SSL connection without server's identity verification is not recommended. 出现这个错误的原因是因为m ...

  2. C++类型萃取

    stl中的迭代器和C++中的类型萃取: http://www.itnose.net/detail/6487058.html 赐教!

  3. 在linux中关闭防火墙

    1) 重启后生效 开启: chkconfig iptables on 关闭: chkconfig iptables off 2) 即时生效,重启后失效 开启: service iptables sta ...

  4. Flask学习 二 模板

    jinja2模版 from flask import Flask,render_template app = Flask (__name__) @app.route ('/<name>') ...

  5. centos7.4下离线安装CDH5.7

    (一)安装前的规划 (1)操作系统版本:centos7.4(64bit) [root@hadoop22 etc]# more /etc/centos-release CentOS Linux rele ...

  6. node请求下载接口时乱码

    先说下问题 之前做的一个项目,三端同时开发(PC.WEB.APP),由于架构方面的原因,服务均不对外开放,接口地址自然也就不对外暴露了,所有请求都要经过node转发,此为背景.... 网站有个扫描二维 ...

  7. Python内置函数(34)——map

    英文文档: map(function, iterable, ...) Return an iterator that applies function to every item of iterabl ...

  8. R语言-离职率分析

    案例:员工流失是困扰企业的关键因素之一,在这次的分析中我将分析以下内容: 对一些重要变量进行可视化及探索分析,收入,晋升,满意度,绩效,是否加班等方面进行单变量分析 分析员工流失的因素,探索各个变量的 ...

  9. 阿里云API网关(15)监控预警

    网关指南: https://help.aliyun.com/document_detail/29487.html?spm=5176.doc48835.6.550.23Oqbl 网关控制台: https ...

  10. spring2——IOC之Bean的装配

    spring容器对于bean的装配提供了两个接口容器分别是"ApplicationContext接口容器"和"BeanFactory接口容器",其中" ...