Description

题库链接

求 \[C_n^m \mod p\]

\(1\leq m\leq n\leq 10^{18},2\leq p\leq 1000000\)

Solution

一般的 \(Lucas\) 是在模数 \(p\) 是质数的条件下适用的。我们来考虑 \(p\) 不是质数的条件。

我们对 \(p\) 进行唯一分解,记 \(p=p_1^{k_1}p_2^{k_2}\cdots p_q^{k_q}\) ,由于形同 \(p_i^{k_i}\) 的部分是互质的,显然我们可以用 \(CRT\) 合并。

列出方程组: \[\left\{ \begin{array}{c} ans\equiv c_1\pmod {{p_1}^{k_1}}\\ ans\equiv c_2\pmod {{p_2}^{k_2}}\\ ...\\ ans\equiv c_q\pmod {{p_q}^{k_q}}\\ \end{array} \right.\] ,对于每个 \(c_i\) ,表示 \(C_n^m\) 在 \(\mod p_i^{k_i}\) 下的结果。由解的唯一性,我们可以证明这个 \(ans\) 就是我们要求的。
根据 \(C_n^m=\frac{n!}{m!(n-m)!}\) 我们只要求出 \(n!\mod p_i^{k_i},m!\mod p_i^{k_i},(n-m)!\mod p_i^{k_i}\) ,再用逆元的那套理论就可以求 \(c_i\) 了。

考虑如何求 \(n!\mod p_i^{k_i}\) 。容易发现 \(n!=\left(\prod\limits_{j=1}^n j^{[p_i\nmid j]}\right)\cdot\left(p_i^{\left\lfloor\frac{n}{p_i}\right\rfloor}\right)\cdot\left(\left\lfloor\frac{n}{p_i}\right\rfloor\large! \right)\) 上述式子分为三个部分,第一个部分显然在模 \(p_i^{k_i}\) 下,是以 \(p_i^{k_i}\) 为周期的。可以周期内找循环节算,周期外的暴力算;第二部分可以直接算;第三部分可以递归求解。

另外注意的是求组合逆元的时候,存在阶乘中的某一个数可能还有 \(p_i\) 这个质因子,不能直接算。直接把 \(p_i\) 全部提出来,最后求完逆元后再补回去。求 \(n!\) 内质因子 \(p\) 的个数可以用 \(\sum\limits_{i=1}^{+\infty} \left\lfloor\frac{n}{p^i}\right\rfloor\) 来求。

Code

//It is made by Awson on 2018.2.10
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
void read(LL &x) {
char ch; bool flag = 0;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
x *= 1-2*flag;
}
void print(LL x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(LL x) {if (x < 0) putchar('-'); print(Abs(x)); } LL n, m, p; LL quick_pow(LL a, LL b, LL p) {
LL ans = 1;
while (b) {
if (b&1) ans = ans*a%p;
b >>= 1, a = a*a%p;
}
return ans;
}
void ex_gcd(LL a, LL b, LL &x, LL &y) {
if (b == 0) {x = 1, y = 0; return; }
ex_gcd(b, a%b, x, y);
LL t = x; x = y, y = t-a/b*y;
}
LL inv(LL a, LL p) {
LL x, y; ex_gcd(a, p, x, y);
return (x%p+p)%p;
}
LL mul(LL n, LL pi, LL pk) {
if (!n) return 1;
LL ans = 1;
for (int i = 2; i <= pk; i++) if (i%pi != 0) ans = ans*i%pk;
ans = quick_pow(ans, n/pk, pk);
for (int i = 2; i <= n%pk; i++) if (i%pi != 0) ans = ans*i%pk;
return ans*mul(n/pi, pi, pk)%pk;
}
LL C(LL n, LL m, LL pi, LL pk, LL p) {
LL a = mul(n, pi, pk), b = mul(m, pi, pk), c = mul(n-m, pi, pk);
LL k = 0;
for (LL i = n; i; i /= pi) k += i/pi;
for (LL i = m; i; i /= pi) k -= i/pi;
for (LL i = n-m; i; i /= pi) k -= i/pi;
return a*inv(b, pk)%pk*inv(c, pk)%pk*quick_pow(pi, k, pk)%pk;
}
LL ex_lucas(LL n, LL m, LL p) {
LL ans = 0;
for (LL i = 2, x = p; i <= x; i++)
if (x%i == 0) {
LL k = 1; while (x%i == 0) k *= i, x /= i;
(ans += C(n, m, i, k, p)*(p/k)%p*inv(p/k, k)%p) %= p;
}
return ans;
}
void work() {
read(n), read(m), read(p);
writeln(ex_lucas(n, m, p));
}
int main() {
work();
return 0;
}

[Codeforces 100633J]Ceizenpok’s formula的更多相关文章

  1. Codeforces.100633J.Ceizenpok's formula(扩展Lucas)

    题目链接 ->扩展Lucas //求C_n^k%m #include <cstdio> typedef long long LL; LL FP(LL x,LL k,LL p) { L ...

  2. codeforces Gym - 100633J Ceizenpok’s formula

    拓展Lucas #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring ...

  3. 2015 ICL, Finals, Div. 1 Ceizenpok’s formula(组合数取模,扩展lucas定理)

    J. Ceizenpok’s formula time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

  4. GYM100633J. Ceizenpok’s formula 扩展lucas模板

    J. Ceizenpok’s formula time limit per test 2.0 s memory limit per test 256 MB input standard input o ...

  5. Ceizenpok’s formula Gym - 100633J 扩展Lucas定理 + 中国剩余定理

    http://codeforces.com/gym/100633/problem/J 其实这个解法不难学的,不需要太多的数学.但是证明的话,我可能给不了严格的证明.可以看看这篇文章 http://ww ...

  6. CF 2015 ICL, Finals, Div. 1 J. Ceizenpok’s formula [Lucas定理]

    http://codeforces.com/gym/100633/problem/J Lucas定理P不是质数裸题 #include <iostream> #include <cst ...

  7. 【codeforces 779E】Bitwise Formula

    [题目链接]:http://codeforces.com/contest/779/problem/E [题意] 给你n个长度为m的二进制数 (有一些是通过位运算操作两个数的形式给出); 然后有一个未知 ...

  8. Codeforces Problem 778B Bitwise Formula

    题目链接:http://codeforces.com/contest/779/problem/E 题意:有n个变量都可以用m位二进制数表示,这n个数的value将以两种格式中的一种给出 1.变量名, ...

  9. codeforces2015ICL,Finals,Div.1#J Ceizenpok’s formula【扩展lucas】

    传送门 [题意]: 求C(n,k)%m,n<=108,k<=n,m<=106 [思路]: 扩展lucas定理+中国剩余定理    #include<cstdio> usi ...

随机推荐

  1. 浅谈element-ui中的BEM范式实践

    日常的工作中,我们无时无刻不在和样式打交道.没有样式的页面就如同一部电影,被人随意地在不同地方做了截取. BEM规范应该是对于我们现在前端组件开发中我觉得是最合适的一套范式了.所以,我在自己的日常工作 ...

  2. C语言第五次作业函数

    一.PTA实验作业 题目1: 6-6 使用函数输出水仙花数 1.本题PTA提交列表 2.设计思路 1.narcissistic函数 1.由于number的值后面会变化,所以定义d,e用于储存numbe ...

  3. 团队作业8——测试与发布(Beta阶段)

    Deadline: 2017-12-17 23:00PM,以博客发表日期为准.   评分基准: 按时交 - 有分,检查的项目包括后文的三个方面 测试报告 发布说明 展示博客(单独一篇博客) 晚交 - ...

  4. 2017-2018-1 1623 bug终结者 冲刺007

    bug终结者 冲刺007 by 20162302 杨京典 今日任务:排行榜界面 排行榜界面,选项界面 简要说明 排行榜界面用于展示用户通关是所使用的步数和时间,选项界面可以调整背景音乐的开关.选择砖块 ...

  5. python的PEP8 代码风格指南

    PEP8 代码风格指南 这篇文章原文实际上来自于这里:https://www.python.org/dev/peps/pep-0008/ 知识点 代码排版 字符串引号 表达式和语句中的空格 注释 版本 ...

  6. bzoj千题计划165:bzoj5127: 数据校验

    http://www.lydsy.com/JudgeOnline/upload/201712/prob12.pdf 区间的任意一个子区间都满足值域连续 等价于 区间任意一个长为2的子区间都满足值域连续 ...

  7. HNOI 2012 永无乡

    codevs 1477 永无乡 http://codevs.cn/problem/1477/ 2012年湖南湖北省队选拔赛  时间限制: 1 s  空间限制: 128000 KB   题目描述 Des ...

  8. 数据结构与算法 —— 链表linked list(01)

    链表(维基百科) 链表(Linked list)是一种常见的基础数据结构,是一种线性表,但是并不会按线性的顺序存储数据,而是在每一个节点里存到下一个节点的指针(Pointer).由于不必须按顺序存储, ...

  9. python小练习之一

    下面的练习本身不难,比如打印1到10,计算1+2+3+...+100 ,最后一个是计算 1-2+3-4...-100 用了类的方法实现 用了列表生成器 用"高级"一丢丢的写法来实现 ...

  10. php的打印sql语句的方法

    echo M()->_sql(); 这样就可以调试当前生成的sql语句: //获取指定天的开始时间和结束时间 $datez="2016-05-12"; $t = strtot ...