XiangBai——【AAAI2017】TextBoxes:A Fast Text Detector with a Single Deep Neural Network


目录

  • 作者和相关链接
  • 方法概括
  • 创新点和贡献
  • 方法细节
  • 实验结果
  • 总结与收获点

作者和相关链接

    • 作者

方法概括

  1. 文章核心

    • 改进版的SSD用来解决文字检测问题
  2. 端到端识别的pipeline:

    • Step 1: 图像输入到修改版SSD网络中 + 非极大值抑制(NMS)→ 输出候选检测结果
    • Step 2: 候选检测结果 + CRNN进行单词识别 → 新的检测结果 + 识别结果
  3. 方法的性能

    • 多尺度版本-定位:ICDAR2011-0.85(f),ICDAR2013-0.85(f),0.73s/per image
    • 单尺度版本-定位ICDAR2011-0.80(f),ICDAR2013-0.80(f),0.09s/per image
  4. 改进的SSD的地方:

    • default box的长宽比进行修改(长条形),使其更适合文字检测(单词)
    • 作为classifier的卷积滤波器大小从3*3变成1*5,更适合文字检测
    • SSD原来为多类检测问题,现在转为单类检测问题
    • 从输入图像为单尺度变为多尺度
    • 利用识别来调整检测的结果(text spotting)

创新点和贡献

  1. 创新点

    • 把SSD进行修改,使其适用于文字检测(SSD本身对小目标识别不鲁棒)
  2. 贡献

    • 提出一个端到端可训练的非常简洁的文字检测框架(SSD本身是single stage的,不像普通方法需要有多步骤组成)
    • 提出一个完整的端到端识别的文字检测+识别框架
    • 实验方法结果好,速度快

方法细节

  1. 相关背景——文字识别的任务

    • 文字检测
    • 文字/单词识别
    • 端到端文字识别 = 文字 + 识别
    • text spotting:和文字检测不同的是,可以利用带字典的文字识别进行调整检测结果,最终是用文字检测的结果进行评判
  2. 相关背景——SSD

    • SSD的网络结构
    • SSD的default box
    • Fig. 1: SSD framework. (a) SSD only needs an input image and ground truth boxes for each object during training. In a convolutional fashion, we evaluate a small set (e.g. 4) of default boxes of different aspect ratios at each location in several feature maps with different scales (e.g. 8 × 8 and 4 × 4 in (b) and (c)). For each default box, we predict both the shape offsets and the confidences for all object categories ((c1; c2; · · · ; cp)). At training time, we first match these default boxes to the ground truth boxes. For example, we have matched two default boxes with the cat and one with the dog, which are treated as positives and the rest as negatives. The model loss is a weighted sum between localization loss (e.g. Smooth L1 [6]) and confidence loss (e.g. Softmax). 

  3. 相关背景——CRNN

    • CRNN的网络结构
  4. TextBoxes与SSD网络结构对比

    • TextBoxes网络结构
    • SSD 网络结构
  5. Text-box layers的输出

    (与SSD一样)

  6. TextBoxes与SSD不同的修改细节

    • default box长宽比

      • (右边图)Figure 2: Illustration of default boxes for a 4*4 grid. For better visualization, only a column of default boxes whose aspect ratios 1 and 5 are plotted. The rest of the aspect ratios are 2,3,7 and 10, which are placed similarly. The black (aspect ratio: 5) and blue (ar: 1) default boxes are centered in their cells. The green (ar: 5) and red (ar: 1) boxes have the same aspect ratios and a vertical offset(half of the height of the cell) to the grid center respectively 

    • 卷积滤波器大小

    • 损失函数

  7. 多尺度输入

  8. TextBoxes+CRNN进行识别

实验结果

  1. 定位

  2. text spotting和端到端识别

  3. 效果展示

总结与收获点

  1. 原始的SSD是无法直接用在文字上的,需要进行许多修改才能达到比较好的效果,这一点作者在实验中也证明了
  2. 现在越来越多用Faster r-cnn,ssd,yolo,这类一般的目标检测方法进行修改后用在特定的目标检测上(例如文字,行人),这些方法不但速度快,而且鲁棒性也高,很重要一点,越来越倾向于端到端训练,这是因为single stage和传统的step-wise的方法相比有很多优势,例如,总体训练简单,没有stage衔接上的性能损耗,没有逐步的误差积累等等;

XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network的更多相关文章

  1. 论文阅读(XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network)

    XiangBai——[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...

  2. XiangBai——【CVPR2018】Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation

    XiangBai——[CVPR2018]Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentat ...

  3. 论文阅读(XiangBai——【CVPR2017】Detecting Oriented Text in Natural Images by Linking Segments)

    XiangBai——[CVPR2017]Detecting Oriented Text in Natural Images by link Segments 目录 作者和相关链接 方法概括 方法细节 ...

  4. 【RS】Automatic recommendation technology for learning resources with convolutional neural network - 基于卷积神经网络的学习资源自动推荐技术

    [论文标题]Automatic recommendation technology for learning resources with convolutional neural network ( ...

  5. 论文阅读(XiangBai——【PAMI2018】ASTER_An Attentional Scene Text Recognizer with Flexible Rectification )

    目录 XiangBai--[PAMI2018]ASTER_An Attentional Scene Text Recognizer with Flexible Rectification 作者和论文 ...

  6. 论文阅读(Lukas Neuman——【ICDAR2015】Efficient Scene Text Localization and Recognition with Local Character Refinement)

    Lukas Neuman--[ICDAR2015]Efficient Scene Text Localization and Recognition with Local Character Refi ...

  7. 论文阅读(Weilin Huang——【AAAI2016】Reading Scene Text in Deep Convolutional Sequences)

    Weilin Huang--[AAAI2016]Reading Scene Text in Deep Convolutional Sequences 目录 作者和相关链接 方法概括 创新点和贡献 方法 ...

  8. 【论文笔记】Malware Detection with Deep Neural Network Using Process Behavior

    [论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40 ...

  9. 论文阅读笔记(三)【AAAI2017】:Learning Heterogeneous Dictionary Pair with Feature Projection Matrix for Pedestrian Video Retrieval via Single Query Image

    Introduction (1)IVPR问题: 根据一张图片从视频中识别出行人的方法称为 image to video person re-id(IVPR) 应用: ① 通过嫌犯照片,从视频中识别出嫌 ...

随机推荐

  1. 【ORACLE】常用脚本

    --IFELSE   DECLARE   V_NUM NUMBER; BEGIN   V_NUM := 100;   IF V_NUM > 100 THEN     --   ELSIF V_N ...

  2. 淘宝弹性布局方案lib-flexible实践

    2个月前,写过一篇文章<从网易与淘宝的font-size思考前端设计稿与工作流>总结过一些移动web中有关手机适配的一些思路,当时也是因为工作的关系分析了下网易跟淘宝的移动页面,最后才有那 ...

  3. MongoDB命令及SQL语法对比

    mongodb与mysql命令对比 传统的关系数据库一般由数据库(database).表(table).记录(record)三个层次概念组成,MongoDB是由数据库(database).集合(col ...

  4. 普通用户ssh无密码登录设置

    这段时间在做Hadoop的环境配置,用root用户只需要按照一定的步骤进行操作就可以直接实现无密码登录,但如果使用新建用户,怎么尝试都不行. 本帖大部分都是其他人帖子的内容.如果按照下面的步骤还是不能 ...

  5. 李洪强iOS经典面试题141-报错警告调试

    李洪强iOS经典面试题141-报错警告调试   报错警告调试 你在实际开发中,有哪些手机架构与性能调试经验 刚接手公司的旧项目时,模块特别多,而且几乎所有的代码都写在控制器里面,比如UI控件代码.网络 ...

  6. c++字符串

    之所以抛弃char*的字符串而选用C++标准程序库中的string类,是因为他和前者比较起来,不必 担心内存是否足够.字符串长度等等,而且作为一个类出现,他集成的操作函数足以完成我们大多数情况下(甚至 ...

  7. 2016huasacm暑假集训训练三 G - 还是畅通工程

    题目链接:http://acm.hust.edu.cn/vjudge/contest/123674#problem/G 这题和上一道题差不多,还更简单点,直接用prim算法就行,直接贴AC代码: im ...

  8. 【转】Maven Jetty 插件的问题(css/js等目录死锁)的解决

    Maven Jetty 插件的问题(css/js等目录死锁,不能自动刷新)的解决:   1. 打开下面的目录:C:\Users\用户名\.m2\repository\org\eclipse\jetty ...

  9. mmysql-最大链接数和最大并发数的区别

    关于连接数和并发数的设置(针对Innodb引擎) 对于机器本身来说,进程数是说机器正在运行的进程数量,调出任务管理器就可以看到.连接数是指进程接收和发送数据的连接ip的数量.并发数是指进程同时发送数据 ...

  10. JDK安装配置

    http://www.runoob.com/java/java-environment-setup.html