注意:本博客代码被黑心数据Hack,有空补回来

啊啊啊这道难题总算是做出来了,首先是帅比浮云的题解发出来一下:http://www.cnblogs.com/fuyun-boy/p/5922742.html

原题目地址:https://www.luogu.org/problem/show?pid=2832

题目背景

小X来到了山区,领略山林之乐。在他乐以忘忧之时,他突然发现,开学迫在眉睫

题目描述

山区有n座山。山之间有m条羊肠小道,每条连接两座山,只能单向通过,并会耗费小X一定时间。

小X现在在1号山,他的目的是n号山,因为那里有火车站。

然而小X的体力是有限的。他每通过一条羊肠小道,就会变得更疲劳,导致他通过任意一条羊肠小道的时间都增加1。

输入输出格式

输入格式:

第一行两个数,n,m

第2行到第m+1行,每行3个数A,B,C,表示A、B之间有一条羊肠小道,可以让小X花费C的时间从A移动到B

输出格式:

两行
第一行一个数T,表示小X需要的最短时间

第二行若干个数,用空格隔开,表示小X的移动路线

例:1 4 2 5表示:小X从1号山开始,移动到4号山,再到2号山,最后到5号山。

输入输出样例

输入样例#1:

5 8
2 4 2
5 2 1
1 2 1
4 3 2
1 3 3
4 5 2
1 5 8
3 5 3
输出样例#1:

7
1 3 5

说明

n<=10000, m<=200000

数据保证没有多条最短路径

【题解】

这道题就是最短路的变体,不过从起点到终点每多走一条边就要多加一点权值。

比如说原来的权值是6+7+9+3+5,之后的权值就是6+(7+1)+(9+2)+(3+3)+(5+4)了。

下面的这个是我写的代码。我的解决方法就是加上两个数组,一个是r,一个是tr。

d数组还是spfa一如既往的d数组,是除去这道题额外的条件的数组。

tr数组是补充数组(废话),d[i]+tr[i]表示从起点走到这个点的最小花费。

r[i]是按照从起点走到第i个节点花费d[i]+tr[i]的最短路径时,最后一次的增加值。

比如说上面的那个6+(7+1)+(9+2)+(3+3)+(5+4),表示一条路径,则这条路径终点节点的r数组的值是4。

因为走到这里最后一次加上的数字是4。

pre数组不说了,帅比浮云说了很清楚。。。

#include <cstdio>
#include <cstring>
#include <queue>
#define mp make_pair
using namespace std;
int n,m,h;
struct edge
{
int v,w;
edge*next;
};
edge* link[10001];
int d[10001],r[10001],tr[10001],pre[10001];
bool v[10001];
void add(int u,int v,int w)
{
edge* p=new edge;
p->v=v;
p->w=w;
p->next=link[u];
link[u]=p;
}
void del(edge* p)
{
if(p!=NULL)
{
del(p->next);
delete p;
}
}
void spfa()
{
queue<int>q;
memset(d,0x3f,sizeof(d));
d[1]=0;
q.push(1);
v[1]=true;
while(!q.empty())
{
int x=q.front();
q.pop();
v[x]=false;
for(edge* p=link[x];p!=0;p=p->next)
{
if(d[x]+tr[x]+p->w+r[x]<d[p->v]+tr[p->v])
{
d[p->v]=d[x]+p->w;
tr[p->v]=tr[x]+r[x];
r[p->v]=r[x]+1;
pre[p->v]=x;
if(v[p->v]==false)
{
v[p->v]=true;
q.push(p->v);
}
}
}
}
}
void print(int n)
{
if(n!=1)
print(pre[n]);
printf("%d ",n);
}
int main()
{
int CO2,H2O,H2CO3;
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&CO2,&H2O,&H2CO3);
add(CO2,H2O,H2CO3);
}
spfa();
printf("%d\n",d[n]+tr[n]);
print(n);
for(int i=1;i<=n;i++)
del(link[i]);
return 0;
}

祝各位NOIP2016 RP++ SCORE++

SPFA+寻路(行路难,洛谷2832)的更多相关文章

  1. spfa模板(洛谷3371)

    洛谷P3371 //spfa:求s到各点的最短路,可含负权边 #include <cstdio> using namespace std; ,max_m=,inf=; struct ety ...

  2. 【模板】负环(SPFA/Bellman-Ford)/洛谷P3385

    题目链接 https://www.luogu.com.cn/problem/P3385 题目大意 给定一个 \(n\) 个点有向点权图,求是否存在从 \(1\) 点出发能到达的负环. 题目解析 \(S ...

  3. 洛谷P2832 行路难 分析+题解代码【玄学最短路】

    洛谷P2832 行路难 分析+题解代码[玄学最短路] 题目背景: 小X来到了山区,领略山林之乐.在他乐以忘忧之时,他突然发现,开学迫在眉睫 题目描述: 山区有n座山.山之间有m条羊肠小道,每条连接两座 ...

  4. NOIP2017提高组Day1T3 逛公园 洛谷P3953 Tarjan 强连通缩点 SPFA 动态规划 最短路 拓扑序

    原文链接https://www.cnblogs.com/zhouzhendong/p/9258043.html 题目传送门 - 洛谷P3953 题目传送门 - Vijos P2030 题意 给定一个有 ...

  5. 洛谷P1342 请柬(SPFA)

    To 洛谷.1342 请柬 题目描述 在电视时代,没有多少人观看戏剧表演.Malidinesia古董喜剧演员意识到这一事实,他们想宣传剧院,尤其是古色古香的喜剧片.他们已经打印请帖和所有必要的信息和计 ...

  6. 洛谷P1144 最短路计数(SPFA)

    To 洛谷.1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M ...

  7. 洛谷.4015.运输问题(SPFA费用流)

    题目链接 嗯..水题 洛谷这网络流二十四题的难度评价真神奇.. #include <queue> #include <cstdio> #include <cctype&g ...

  8. 【题解】洛谷P1073 [NOIP2009TG] 最优贸易(SPFA+分层图)

    次元传送门:洛谷P1073 思路 一开始看题目嗅出了强连通分量的气息 但是嫌长没打 听机房做过的dalao说可以用分层图 从来没用过 就参考题解了解一下 因为每个城市可以走好几次 所以说我们可以在图上 ...

  9. 洛谷P1186 玛丽卡 spfa+删边

    洛谷P1186 玛丽卡http://blog.csdn.net/huihao123456/article/details/73414139题目描述 麦克找了个新女朋友,玛丽卡对他非常恼火并伺机报复. ...

随机推荐

  1. nginx缓存设置proxy_cache

    http://www.cnblogs.com/dudu/p/4597351.html http块: proxy_cache_path /tmp/cache levels=1:2 keys_zone=n ...

  2. Electronic Payment App analysis

    Electronic Payment App is getting more and more popular now. People don't have to bring credit cards ...

  3. 老生长谈,温故知新:css实现右侧固定宽度,左侧宽度自适应

    反过来也可以:左侧宽度固定,右侧自适应.不管是左是右,反正就是一边宽度固定,一边宽度自适应. 这种布局比较常见,博客园很多默认主题就是这种.一般情况下,这种布局中宽度固定的区域是侧边栏,而自适应的区域 ...

  4. python中的浅拷贝和深拷贝

    1.赋值语句 a = 'abc' b = a print id(a) print id(b) # id(a):29283464 # id(b):29283464 通过简单的复制,我们可以看到,a b其 ...

  5. ASP.NET 表单验证实现浅析

    首先,自然是配置 Web.config,在 <system.web> 下设定: <authentication mode="Forms"> <form ...

  6. python types模块

    types模块成员: ['BooleanType', 'BufferType', 'BuiltinFunctionType', 'BuiltinMethodType', 'ClassType', 'C ...

  7. MySQL的高可用设计方案的记录

    一.看下常用的MySQL的高可用方案: 对上图的说明: 1)HeartBeat通过串口线或者以太网网线直连网卡对对端的服务做健康检查,并负责执行Drbd,MySQL,vip等资源的自动切换. 2)da ...

  8. ADOConnectoin事务和存储过程中的Begin tran commit

    一直以来我都是在存储过程中使用事务 create proc usp_proc begin begin  tran ..... commit end 那么我现在问一个问题,如果在BCB的代码中写这样的代 ...

  9. ios LoadView 方法

    当ViewController中的View不通过nib文件而是自己来创建的时候需要重载LoadView方法.否则不需要重载LoadView方法.

  10. Modern Operating Systems(Ⅰ)——2014.12.15

    进程   进程模型     进程就是一个正在执行的程序的实例  值得注意的是,若一个程序运行了两遍,则算作两个进程 创建进程 在通用系统中,有四种主要事件导致进程的创建 ①系统的初始化 ②执行了 正在 ...