(01背包变形) Cow Exhibition (poj 2184)
Description
fun..."
- Cows with Guns by Dana Lyons
The cows want to prove to the public that they are both smart and fun. In order to do this, Bessie has organized an exhibition that will be put on by the cows. She has given each of the N (1 <= N <= 100) cows a thorough interview and determined two values for each cow: the smartness Si (-1000 <= Si <= 1000) of the cow and the funness Fi (-1000 <= Fi <= 1000) of the cow.
Bessie must choose which cows she wants to bring to her exhibition. She believes that the total smartness TS of the group is the sum of the Si's and, likewise, the total funness TF of the group is the sum of the Fi's. Bessie wants to maximize the sum of TS and TF, but she also wants both of these values to be non-negative (since she must also show that the cows are well-rounded; a negative TS or TF would ruin this). Help Bessie maximize the sum of TS and TF without letting either of these values become negative.
Input
* Lines 2..N+1: Two space-separated integers Si and Fi, respectively the smartness and funness for each cow.
Output
Sample Input
5
-5 7
8 -6
6 -3
2 1
-8 -5
Sample Output
8
Hint
Bessie chooses cows 1, 3, and 4, giving values of TS = -5+6+2 = 3 and TF
= 7-3+1 = 5, so 3+5 = 8. Note that adding cow 2 would improve the value
of TS+TF to 10, but the new value of TF would be negative, so it is not
allowed.
给出num(num<=100)头奶牛的S和F值(-1000<=S,F<=1000),要求在这几头奶牛中选出若干头,使得在其总S值TS和总F值TF均不为负的前提下,求最大的TS+TF值
可以把S当体积,F当价值做01背包。但是注意是S可为负,所以整体加100000,然后要注意DP顺序,S为负是要顺序,为正时逆序。
还有就是注意DP时的范围,凡是可能影响的都要包括。
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;
const int INF=0x3f3f3f3f;
const int MAXN=;
#define met(a,b) (memset(a,b,sizeof(a)))
int dp[];
int value[MAXN];
int weight[MAXN]; int main()
{
int n, K=; while(scanf("%d", &n)!=EOF)
{
int i, j; for(i=; i<=n; i++)
scanf("%d%d", &value[i], &weight[i]); for(i=; i<=; i++) dp[i] = -INF; dp[K] = ; for(i=; i<=n; i++)
{
if(value[i]>)
{
for(j=; j>=value[i]; j--)
dp[j] = max(dp[j], dp[j-value[i]]+weight[i]);
}
else
{
for(j=; j<=+value[i]; j++)
dp[j] = max(dp[j], dp[j-value[i]]+weight[i]);
}
} int ans = ; for(i=K; i<=; i++)
{
if(dp[i]>= && dp[i]+i-K>ans)
ans = dp[i]+i-K;
} printf("%d\n", ans);
}
return ;
} /* 5
-5 7
8 -6
6 -3
2 1
-8 -5 */
(01背包变形) Cow Exhibition (poj 2184)的更多相关文章
- DP:Cow Exhibition(POJ 2184)(二维问题转01背包)
牛的展览会 题目大意:Bessie要选一些牛参加展览,这些牛有两个属性,funness和smartness,现在要你求出怎么选,可以使所有牛的smartness和funness的最大,并且这两 ...
- Cow Exhibition POJ - 2184
题目地址:https://vjudge.net/problem/POJ-2184 下面的解释是从一个大佬那搬来的,讲的很清楚题意:给定一些奶牛,每个牛有s和f两个属性值,有正有负,要求选出一些牛,使得 ...
- FZU 2214 Knapsack problem 01背包变形
题目链接:Knapsack problem 大意:给出T组测试数据,每组给出n个物品和最大容量w.然后依次给出n个物品的价值和体积. 问,最多能盛的物品价值和是多少? 思路:01背包变形,因为w太大, ...
- codeforce Gym 101102A Coins (01背包变形)
01背包变形,注意dp过程的时候就需要取膜,否则会出错. 代码如下: #include<iostream> #include<cstdio> #include<cstri ...
- HDU 2639 Bone Collector II(01背包变形【第K大最优解】)
Bone Collector II Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- 【01背包变形】Robberies HDU 2955
http://acm.hdu.edu.cn/showproblem.php?pid=2955 [题意] 有一个强盗要去几个银行偷盗,他既想多抢点钱,又想尽量不被抓到.已知各个银行 的金钱数和被抓的概率 ...
- CF#214 C. Dima and Salad 01背包变形
C. Dima and Salad 题意 有n种水果,第i个水果有一个美味度ai和能量值bi,现在要选择部分水果做沙拉,假如此时选择了m个水果,要保证\(\frac{\sum_{i=1}^ma_i}{ ...
- [POJ 2184]--Cow Exhibition(0-1背包变形)
题目链接:http://poj.org/problem?id=2184 Cow Exhibition Time Limit: 1000MS Memory Limit: 65536K Total S ...
- poj 2184 Cow Exhibition(dp之01背包变形)
Description "Fat and docile, big and dumb, they look so stupid, they aren't much fun..." - ...
随机推荐
- jquery实现动画
animate() 方法 语法: $(selector).animate({params},speed,callback); 必需的 params 参数定义形成动画的 CSS 属性. 可选的 spee ...
- -[UIKeyboardLayoutStar release]: message sent to deallocated instance 0x7fbe49120000
__NSArrayM objectAtIndex: 取消swizzle 只有debug的时候会报错,发布的时候是好的,所以可以不用改
- Redis(一)基础
Redis Remote Dictionary Server 远程字典服务器 功能 缓存(当空间达到限制时,可以按照一定规则,淘汰部分数据) 队列(支持阻塞式读取) 订阅/发布(可以将其做出聊天室) ...
- Android "adb devices no permissions"
列出当前连接设备时出现以下情况 [user@dell platform-tools]# ./adb devices List of devices attached ???????????? no p ...
- cocos2dx中常见设计模式
1.单例设计模式:导演类 2.观察者模式: 被观察者含有一个数组,里边存放了所有观察者的引用,在被观察者的状态发生改变的时候,通过调用观察者的函数来通知观察者,实现了信息的传递. 事件监听器:就是采 ...
- ElasticSearch 命令行管理工具Curator
一.背景 elastic官网现在已经大面积升级到了5.x版本,然而针对elasticsearch的命令行管理工具curator现在仍然是4.0版本. 刚开始找到此工具,深深的怕因为版本更迭无法使用,还 ...
- jQuery将悬停效果加到菜单项
<!doctype html> <html> <head> <meta charset="utf-8"> <title> ...
- jQuery 菜单栏 展开与收缩例子
废话少说,上代码 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://ww ...
- C#发送邮件
以下代码已用 .yeah .qq 以及本人公司邮箱测试通过,可多发,可挂附件 本次测试邮件发送类,是用的winform 页面如下 窗口的后台代码如下: using System; using Syst ...
- NSBundle控件和UIImageView和UIButton区别
1.NSBundle 1> 一个NSBundle代表一个文件夹,利用NSBundle能访问对应的文件夹 2> 利用mainBundle就可以访问软件资源包中的任何资源 3> 模拟器应 ...