MT【190】绝对值的和
(2012浙江压轴题)
已知$a>0,b\in R$,函数$f(x)=4ax^3-2bx-a+b$.
1)证明:当$0\le x\le 1$时,
i)函数$f(x)$的最大值为$|2a-b|+a;$
ii)$f(x)+|2a-b|+a\ge0$
2)若$-1\le f(x)\le 1$对$x\in[0,1]$恒成立,求$a+b$的范围.
证明:$f(0)=b-a,f(1)=3a-b$故$f(0)+f(1)=2a>0$,
所以$\max\{f(0),f(1)\}=\max\{|f(0)|,|f(1)|\}$
又$|2a-b|+a=\max\{|a-b|,|3a-b|\}=\max\{|f(0)|,|f(1)|\}$
\begin{align*}
\therefore |f(x)|
& =|(2x^3-3x+1)f(0)+(2x^3-x)f(1)| \\
&\le|(2x^3-3x+1)||f(0)|+|(2x^3-x)||f(1)|\\
&\le\left(|(2x^3-3x+1)|+|(2x^3-x)|\right)\max\{|f(0)|,|f(1)|\}\\
&=\max\{\left(|-2x+1|,|4x^3-4x+1|\right)\}(|2a-b|+a)\\
&\le|2a-b|+a
\end{align*}
最后一个不等式是因为$x\in[0,1]$时$|-2x+1|\le1,$
且$1\ge4x^3-4x+1=1-2x(2-2x)(1+x)\ge1-2\left(\dfrac{x+2-2x+1+x}{3}\right)^3=-1$
故第一题i)ii)得证。
2)由$|f(x)|\le1$得$|f(x)\le1$,即$|2a-b|\le 1-a$,故
$a+b=-1+3a+(1-a)-(2a-b)\ge-1+3a+|2a-b|-(2a-b)>-1$当$a\longrightarrow0,b=-1$时取到下确界.
$a+b=3-3(1-a)-(2a-b)\le3-3|2a-b|-(2a-b)\le3$当且仅当$a=2,b=1$时取到最大值.
注:1当然第二问用线性规划也是显然的.此题系数怪异其实也是和积分对应的几何意义有关.
2.还是$|a|+|b|=\max\{|a-b|,a+b|\}$
3.$2\max\{f,g\}=|f-g|+f+g$
4.$\max\{a,b\}\ge M_t\{a,b\}$(a,b的幂平均)
此题这个漂亮的做法若干年前也是自己想到的,但是一直没有很好的保存,现在重新按照思路编辑,感慨万千,留个纪念.
MT【190】绝对值的和的更多相关文章
- MT【9】绝对值二次函数
解答: 评:容易用绝对值不等式证明当$x\in[1,5]$时$|x^2+px+q|\ge2$
- MT【322】绝对值不等式
已知 $a,b,c\in\mathbb R$,求证:$|a|+|b|+|c|+|a+b+c|\geqslant |a+b|+|b+c|+|c+a|$ 分析:不妨设$c=\max\{a,b,c\},\d ...
- MT【289】含参绝对值的最大值之三
已知$a>0$,函数$f(x)=e^x+3ax^2-2e x-a+1$,(1)若$f(x)$在$[0,1]$上单调递减,求$a$的取值范围.(2)$|f(x)|\le1$对任意$x\in[0,1 ...
- MT【285】含参数函数绝对值的最大值
(浙江2013高考压轴题)已知$a\in R$,函数$f(x)=x^3-3x^2+3ax-3a+3$(2)当$x\in[0,2]$时,求$|f(x)|$的最大值. 分析:由题意$f^{'}(x)=3x ...
- MT【270】含参绝对值函数最大之二
已知$f(x)=2ax\cos^2x+(a-1)\cos x-1,a>0$,记$|f(x)|$的最大值为$A$,1)求A.2)证明:$|-2a\sin 2x+(1-a)\sin x|\le 2A ...
- MT【269】含参函数绝对值最大
设函数$f(x)=ax^2+(2b+1)x-a-2$($a,b\in\mathcal R$,$a\neq 0$). (1) 若$a=-2$,求函数$y=|f(x)|$在$[0,1]$上的最大值$M(b ...
- MT【192】又是绝对值函数
(2018浙江新高考联盟2018第三次联考填空压轴题) 已知$f(x)=x^2+x-2$,若函数$g(x)=|f(x)|-f(x)-2mx-2m^2$有三个不同的零点,则实数$m$的取值范围是____ ...
- MT【86】两个绝对值之和最大
分析:这里只需要注意到$(|x|+|y|)_{max}=max\{|x+y|,|x-y|\}$,所以只需求$max\{|20a|,|14b|\}$ 进而变成熟悉的反解系数问题.容易知道最大值为$a=2 ...
- 多点触摸(MT)协议(翻译)
参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...
随机推荐
- STS-创建spring配置文件
1.创建一个bean文件 2.输入文件名applicationContext.xml 3.这里会自动显示模板文件 4.创建后,自动填充头不定义 到这里就可以发现,我们创建spring文件时,需要的配置 ...
- odoo明细表汇总数据
一.在主表中#改动地方 总结算金额 求和:def _get_subtotal2(self, cr, uid, ids, field_name, arg, context=None): # 初始化 re ...
- kettle学习笔记(一)——入门与安装
一.概述 1.kettle是什么 Kettle是一款国外开源的ETL工具,纯java编写,可以在Window.Linux.Unix上运行,绿色无需安装,数据抽取高效稳定.中文名称叫水壶,该项目的主程序 ...
- 20155217《网络对抗》Exp01 PC平台逆向破解(5)M
20155217<网络对抗>Exp01 PC平台逆向破解(5)M 实验要求 掌握NOP,JNE,JE,JMP,CMP汇编指令的机器码 掌握反汇编与十六进制编程器 能正确修改机器指令改变程序 ...
- 网络对抗第一次实验——PC平台逆向破解(5)M
网络对抗第一次实验--PC平台逆向破解(5)M 实践一 手工修改可执行文件,改变程序执行流程,直接跳转到getShell函数. 操作步骤: 获取实验用文件pwn1,复制,复制出来的文件改名为20155 ...
- 20155318 《网络攻防》 Exp8 Web基础
20155318 <网络攻防> Exp8 Web基础 基础问题 什么是表单? HTML表单用于收集用户输入,用元素定义,包含不同类型的input元素.复选框.单选按钮.提交按钮等等.一个表 ...
- What's new in XAML of .NET 4.0( .NET 4.0中XAML的新功能 )
原文 What's new in XAML of .NET 4.0 What's new in XAML of .NET 4.0 Easy Object References with {x:Refe ...
- 2017战略No.2:开始电子化记账
一.懒散的4年 大学毕业后,就没有怎么记账了. 自己花的钱,心里有个大概,但是不能算得很具体. 比如说,2016年,又没有攒几个钱,心里多少有点压抑. 大脑去算账,只能算房租吃饭等金额较大的开销,更多 ...
- Verilog中的有符号计算之认知补码
Verilog中的有符号计数,一般是自己定义的而不是像C语言之类的定义一个有符号变量就好了.所以,要想在FPGA的世界里随心所欲的进行有符号运算,必须先对补码有一个很好的认知,然后再注意Verilog ...
- CDH上Cloudera Management Service 各个角色迁移至其他节点
1.首先查看Cloudera Management Service下有哪些服务,cdh版本为5.9.2: 可以看到基本上有以上6个角色: 2.停止所有角色,并执行删除: 3.找到集群中另外一个节点,添 ...