【刷题】BZOJ 2194 快速傅立叶之二
Description
请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5。 a,b中的元素均为小于等于100的非负整数。
Input
第一行一个整数N,接下来N行,第i+2..i+N-1行,每行两个数,依次表示a[i],b[i] (0 < = i < N)。
Output
输出N行,每行一个整数,第i行输出C[i-1]。
Sample Input
5
3 1
2 4
1 1
2 4
1 4
Sample Output
24
12
10
6
1
Solution
看上去是个FFT的模板题,实际上它就是的
将b数组翻转之后,c数组就可以用FFT求了
手写c数组原来一些位置的式子,然后会发现它们在新的c数组的位置的规律
输出就好了
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const db Pi=acos(-1);
const int MAXN=1<<19;
int n,m,cnt,rev[MAXN],sn;
struct Complex{
db real,imag;
inline Complex operator + (const Complex &A) const {
return (Complex){real+A.real,imag+A.imag};
};
inline Complex operator - (const Complex &A) const {
return (Complex){real-A.real,imag-A.imag};
};
inline Complex operator * (const Complex &A) const {
return (Complex){real*A.real-imag*A.imag,imag*A.real+real*A.imag};
};
};
Complex a[MAXN],b[MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void FFT(Complex *A,int tp)
{
for(register int i=0;i<n;++i)
if(i<rev[i])std::swap(A[i],A[rev[i]]);
for(register int l=2;l<=n;l<<=1)
{
Complex wn=(Complex){cos(2*Pi/l),sin(tp*2*Pi/l)};
for(register int i=0;i<n;i+=l)
{
Complex w=(Complex){1,0};
for(register int j=0;j<(l>>1);++j)
{
Complex A1=A[i+j],A2=A[i+j+(l>>1)]*w;
A[i+j]=A1+A2,A[i+j+(l>>1)]=A1-A2;
w=w*wn;
}
}
}
}
int main()
{
read(n);m=n+n-1;sn=n;
for(register int i=0;i<n;++i)scanf("%lf%lf",&a[i].real,&b[i].real);
std::reverse(b,b+n);
for(n=1;n<m;n<<=1)++cnt;
for(register int i=0;i<n;++i)rev[i]=(rev[i>>1]>>1)|((i&1)<<(cnt-1));
FFT(a,1);FFT(b,1);
for(register int i=0;i<n;++i)a[i]=a[i]*b[i];
FFT(a,-1);
for(register int i=sn-1;i<=sn+sn-2;++i)write((int)(a[i].real/n+0.5),'\n');
return 0;
}
【刷题】BZOJ 2194 快速傅立叶之二的更多相关文章
- bzoj 2194: 快速傅立叶之二 -- FFT
2194: 快速傅立叶之二 Time Limit: 10 Sec Memory Limit: 259 MB Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k & ...
- bzoj 2194 快速傅立叶之二 —— FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2194 如果把 a 序列翻转,则卷积得到的是 c[n-i],再把得到的 c 序列翻转即可. 代 ...
- BZOJ 2194 快速傅立叶之二 ——FFT
[题目分析] 咦,这不是卷积裸题. 敲敲敲,结果样例也没过. 看看看,卧槽i和k怎么反了. 艹艹艹,把B数组取个反. 靠靠靠,怎么全是零. 算算算,最终的取值范围算错了. 交交交,总算是A掉了. [代 ...
- [BZOJ]2194: 快速傅立叶之二
题目大意:给定序列a,b,求序列c满足c[k]=sigma(a[i]*b[i-k]) (k<=i<n).(n<=10^5) 思路:观察发现就是普通的卷积反一反(翻转ab其中一个后做卷 ...
- BZOJ.2194.快速傅立叶之二(FFT 卷积)
题目链接 \(Descripiton\) 给定\(A[\ ],B[\ ]\),求\[C[k]=\sum_{i=k}^{n-1}A[i]*B[i-k]\ (0\leq k<n)\] \(Solut ...
- bzoj 2194: 快速傅立叶之二【NTT】
看别的blog好像我用了比较麻烦的方法-- (以下的n都--过 \[ c[i]=\sum_{j=i}^{n}a[i]*b[j-i] \] 设j=i+j \[ c[i]=\sum_{j=0}^{n-i} ...
- BZOJ 2194 快速傅立叶变换之二 | FFT
BZOJ 2194 快速傅立叶变换之二 题意 给出两个长为\(n\)的数组\(a\)和\(b\),\(c_k = \sum_{i = k}^{n - 1} a[i] * b[i - k]\). 题解 ...
- 【BZOJ 2194】2194: 快速傅立叶之二(FFT)
2194: 快速傅立叶之二 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1273 Solved: 745 Description 请计算C[k]= ...
- 【BZOJ】2194: 快速傅立叶之二
http://www.lydsy.com/JudgeOnline/problem.php?id=2194 题意:求$c[k]=\sum_{k<=i<n} a[i]b[i-k], n< ...
随机推荐
- 微信小程序开发 [05] wx.request发送请求和妹纸图
1.wx.request 微信小程序中用于发起网络请求的API就是wx.request了,具体的参数太多,此处就不再一一详举了,基本使用示例如下: wx.request({ url: 'test.ph ...
- NYOJ 35 表达式求值
一个模板了 哈哈. 这题由于已经包括了整形.浮点形了,以后也不须要特别处理了. /* 这里主要是逆波兰式的实现,使用两个stack 这里用字符串来模拟一个stack,第一步,将中缀表达式转变为后缀表达 ...
- Android Studio com.android.support:percent 导入错误 - 转
看第一行代码(第二版的)书,讲了一个关于PercentFrameLayout和PercentRelativeLayout的部分,书上在build.gradle中导入了com.android.suppo ...
- 2015520吴思其 基于《Arm试验箱的国密算法应用》课程设计个人报告
20155200吴思其 基于<Arm试验箱的国密算法应用>课程设计个人报告 课程设计中承担的任务 完成试验箱测试功能4,5,6以及SM3加密实验的实现 测试四 GPIO0按键中断实验 实验 ...
- 20155229《网络对抗技术》Exp3:免杀原理与实践
实验预习 免杀: 看为一种能使病毒木马避免被杀毒软件查杀的技术. 免杀的分类: 开源免杀:指在有病毒.木马源代码的前提下,通过修改源代码进行免杀.. 手工免杀:指在仅有病毒.木马的可执行文件(.exe ...
- 20155323刘威良《网络对抗》Exp3 免杀原理与实践
20155323刘威良<网络对抗>Exp3 免杀原理与实践 实践内容 1 正确使用msf编码器,msfvenom生成如jar之类的其他文件,veil-evasion,自己利用shellco ...
- 20155327 2017-2018-2《Java程序设计》课程总结
20155327 2017-2018-2<Java程序设计>课程总结 每周作业链接汇总 预备作业1:我期望的师生关系,对课程的展望:https://www.cnblogs.com/l97- ...
- 《网络对抗》Exp4 恶意代码分析
20155336<网络对抗>Exp4 恶意代码分析 问题回答 实验后回答问题 (1)如果在工作中怀疑一台主机上有恶意代码,但只是猜想,所有想监控下系统一天天的到底在干些什么.请设计下你想监 ...
- springmvc接收json注意事项
在以前使用SpringMvc框架时,在接受json数据时碰到了一些奇怪的问题.这里记录下来,方便以后查阅. 1. data 里写json对象 , 即该json数据没有被单(双)引号包住 ...
- C指针乱谈(1)
写了几年的C指针几乎没怎么用过,因为感觉没什么用.不过在听了一位老师讲课之后,我改变的我的想法. 在此稍做总结,希望能帮到一些和我有同样想法的人,希望看完这篇文章后能改变您的想法. 首先,说说概念,指 ...