http://acm.hdu.edu.cn/showproblem.php?pid=1024

Max Sum Plus Plus

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 21363    Accepted Submission(s): 7144

Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).

Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).

But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^

 
Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
 
Output
Output the maximal summation described above in one line.
 
Sample Input
1 3 1 2 3
2 6 -1 4 -2 3 -2 3
 
Sample Output
6
8
 
http://www.cnblogs.com/lishuhuakai/archive/2012/10/13/4840323.html  (感觉写的很不错, 反正我是看懂了)
 
 
这道题在国赛前我就看了, 可是一直不知如何下手, 终于决定一定要把它给A了, 现在的我能沉下心来, 好好看解析, 好好的自己去理解, 果然还是懂了的
 
重点在递归式上
 

w[i][j]: 前 j 个数分为 i 段, 第 j 个数必须选;1. 第 j 个数单独为1段;2. 第 j 个数与前面的数连一块。
w[i][j] = max(b[i-1][j-1], w[i][j-1]) + a[j];
b[i][j]:前 j 个数分为 i 段, 第 j 个数可选可不选; 1.选第 j 个数;2.不选第 j 个数。
b[i][j] = max(b[i][j-1], w[i][k]);

/// w[j] 表示 j 个元素取 i 段, a[j] 必须取是的最大值
w[j] = max(dp[1-t][j-1], w[j-1]) + sum[j]-sum[j-1];
/// dp[t][j] 表示在a[j]可取可不取这两种情况下取得的最大值
dp[t][j] = max(dp[t][j-1], w[j]);

 

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define N 1000001
using namespace std; int sum[N], w[N], dp[][N]; ///sum[i] 里面存的是前 i 项和 int main()
{
int m, n; while(scanf("%d%d", &m, &n)!=EOF)
{
int i, j, x; sum[] = ;
for(i=; i<=n; i++)
{
scanf("%d", &x);
sum[i] = sum[i-] + x;
dp[][i] = ; ///从前 i 个元素中取 0 段, 最大值为 0
} /** 我们先假设a[i]中 存放该序列的第 i 个值,
w[i][j] 表示前 j 个数分为 i 段, 第 j 个数必须选这种情况下取得的最大值
b[i][j]表示在前 j 个数中取 i 段 这种情况写取得的最大值 w[i][j]: 前 j 个数分为 i 段, 第 j 个数必须选;1. 第 j 个数单独为1段;2. 第 j 个数与前面的数连一块。
w[i][j] = max(b[i-1][j-1], w[i][j-1]) + a[j];
b[i][j]:前 j 个数分为 i 段, 第 j 个数可选可不选; 1.选第 j 个数;2.不选第 j 个数。
b[i][j] = max(b[i][j-1], w[i][j]); **/ int t=;
for(i=; i<=m; i++) /// i表示取 i 段
{
for(j=i; j<=n; j++) /// 如果dp[i][j](j<i)是没有意义的
{
if(i==j)
dp[t][j] = w[j] = sum[j];
else
{
/// w[j] 表示 j 个元素取 i 段, a[j] 必须取是的最大值
w[j] = max(dp[-t][j-], w[j-]) + sum[j]-sum[j-];
/// dp[t][j] 表示在a[j]可取可不取这两种情况下取得的最大值
dp[t][j] = max(dp[t][j-], w[j]);
}
}
t = -t; ///t在 0 和 1 直间交替变换 /** 为什么要交换呢??? 这是为了要节省空间
仔细观察递归式
w[i][j] = max(b[i-1][j-1], w[i][j-1]) + a[j];
b[i][j] = max(b[i][j-1], w[i][j]);
我们发现,对于取 i 段, w[i][j] 只与 b[i-1][k-1] 和 w[i][k-1] 有关, 与之前的那一些项没有关系
因此我们的数组可以开小一点, 用更新来覆盖掉前面的值!!! **/
} printf("%d\n", dp[m%][n]);
}
return ;
}
 
 
 
 

(动态规划)Max Sum Plus Plus--hdu--1024的更多相关文章

  1. Max Sum Plus Plus HDU - 1024

    Max Sum Plus Plus     HDU - 1024 Now I think you have got an AC in Ignatius.L's "Max Sum" ...

  2. 最大m段子段和 Day9 - E - Max Sum Plus Plus HDU - 1024

    Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we ...

  3. Max Sum Plus Plus HDU - 1024 基础dp 二维变一维的过程,有点难想

    /* dp[i][j]=max(dp[i][j-1]+a[j],max(dp[i-1][k])+a[j]) (0<k<j) dp[i][j-1]+a[j]表示的是前j-1分成i组,第j个必 ...

  4. C - Max Sum Plus Plus HDU - 1024

    用二位数组dp[i][j]记录组数为i,前j个数字的最大子段和. 转移方程: dp[i][j],考虑第j个数,第j个数可以并到前面那一组,此时dp[i][j]=dp[i][j-1]+arr[j],第j ...

  5. HDU 1024 Max Sum Plus Plus【动态规划求最大M子段和详解 】

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  6. HDU 1024 Max Sum Plus Plus (动态规划)

    HDU 1024 Max Sum Plus Plus (动态规划) Description Now I think you have got an AC in Ignatius.L's "M ...

  7. HDU 1024 Max Sum Plus Plus (动态规划、最大m子段和)

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  8. HDU 1024 Max Sum Plus Plus [动态规划+m子段和的最大值]

    Max Sum Plus Plus Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tot ...

  9. hdu 1024 Max Sum Plus Plus (动态规划)

    Max Sum Plus PlusTime Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  10. HDU 1024 Max Sum Plus Plus (动态规划 最大M字段和)

    Problem Description Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To b ...

随机推荐

  1. python 常库介绍及安装方法

    bsddb3:BerkeleyDB的连接组件Cheetah-1.0:我比较喜欢这个版本的cheetahcherrypy:一个WEB frameworkctypes:用来调用动态链接库DBUtils:数 ...

  2. oracle 分页 where 三层

    查询[start,start+limit],包含start,包含start+limit,如start=21,limit=10结果就是21到30,包含21和30SELECT * FROM (SELECT ...

  3. js的JSON

    把任何JavaScript对象变成JSON,就是把这个对象序列化成一个JSON格式的字符串,这样才能够通过网络传递给其他计算机. 如果我们收到一个JSON格式的字符串,只需要把它反序列化成一个Java ...

  4. 5J - 复习时间

    为了能过个好年,xhd开始复习了,于是每天晚上背着书往教室跑.xhd复习有个习惯,在复习完一门课后,他总是挑一门更简单的课进行复习,而他复习这门课的效率为两门课的难度差的平方,而复习第一门课的效率为1 ...

  5. UFT12 更新模式

    一. 更新测试(非常规运行模式).  如果您知道应用程序已更改, 请以下列某种模式运行测试以相应更新测试: 维护运行模式.如果预计UFT 无法识别测试中的对象, 则使用此模式.当测试运行时, UFT ...

  6. PHP Jquery 代码操作 内容 属性 样式 事件 Json数据

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  7. web前端学习笔记:文本属性

    今天的web前端笔记主要讲述文本属性,希望能帮助到正在学习web前端开发的初学者们,废话不多说了,一起来看看文本属性的相关内容吧. 文本属性 文本缩进 将Web页面上的一个段落第一行缩进,这是一种最常 ...

  8. Web应用获取文件路径的方法

    拥有 HttpServletRequest req 对象 req.getSession().getServletContext().getRealPath("/")   ----- ...

  9. 学习selenium的过程

  10. Armadillo installation

    1.dependencies sudo apt-get install libopenblas-devsudo apt-get install liblapack-devsudo apt-get in ...